Impact of spatial clustering on disease transmission and optimal control

Michael J. Tildesley, Thomas A. House, Mark C. Bruhn, Ross J. Curry, Maggie O'Neil, Justine L. E. Allpress, Gary Smith, Matt J. Keeling

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Spatial heterogeneities and spatial separation of hosts are often seen as key factors when developing accurate predictive models of the spread of pathogens. The question we address in this paper is how coarse the resolution of the spatial data can be for a model to be a useful tool for informing control policies. We examine this problem using the specific case of foot-and-mouth disease spreading between farms using the formulation developed during the 2001 epidemic in the United Kingdom. We show that, if our model is carefully parameterized to match epidemic behavior, then using aggregate county-scale data from the United States is sufficient to closely determine optimal control measures (specifically ring culling). This result also holds when the approach is extended to theoretical distributions of farms where the spatial clustering can be manipulated to extremes. We have therefore shown that, although spatial structure can be critically important in allowing us to predict the emergent population-scale behavior from a knowledge of the individual-level dynamics, for this specific applied question, such structure is mostly subsumed in the parameterization allowing us to make policy predictions in the absence of high-quality spatial information. We believe that this approach will be of considerable benefit across a range of disciplines where data are only available at intermediate spatial scales.

Original languageEnglish
Pages (from-to)1041-1046
Number of pages6
JournalProceedings of the National Academy of Sciences (PNAS)
Volume107
Issue number3
DOIs
Publication statusPublished - 19 Jan 2010

Fingerprint

Dive into the research topics of 'Impact of spatial clustering on disease transmission and optimal control'. Together they form a unique fingerprint.

Cite this