Improved bounds for randomly colouring simple hypergraphs

Weiming Feng, Heng Guo, Jiaheng Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree Δ. For any δ>0, if k≥20(1+δ)δ and q≥100Δ2+δk−4/δ−4, the running time of our algorithm is O~(poly(Δk)⋅n1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Voung, 2021; He, Sun, and Wu, 2021), and does not require Ω(logn) colours unlike the work of Frieze and Anastos (2017).
Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
EditorsAmit Chakrabarti, Chaitanya Swamy
Place of PublicationDagstuhl, Germany
PublisherSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Pages1-17
Volume245
ISBN (Electronic)9783959772495
DOIs
Publication statusPublished - 15 Sept 2022
EventRANDOM -
Duration: 19 Sept 202221 Sept 2022
https://randomconference.com/random-2022-home/

Publication series

NameLeibniz International Proceedings in Informatics (LIPIcs)
PublisherSchloss Dagstuhl -- Leibniz-Zentrum für Informatik
Volume245
ISSN (Electronic)1868-8969

Conference

ConferenceRANDOM
Period19/09/2221/09/22
Internet address

Keywords / Materials (for Non-textual outputs)

  • approximate counting
  • Markov chain
  • mixing time
  • hypergraph colouring

Fingerprint

Dive into the research topics of 'Improved bounds for randomly colouring simple hypergraphs'. Together they form a unique fingerprint.

Cite this