TY - JOUR
T1 - In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector
AU - Clark, Philip James
AU - Farrington, Sinead
AU - Faucci Giannelli, Michele
AU - Gao, Yanyan
AU - Hasib, Ahmed
AU - Leonidopoulos, Christos
AU - Martin, Victoria Jane
AU - Mijovic, Liza
AU - Wynne, Benjamin
AU - Collaboration, Atlas
PY - 2019/2/13
Y1 - 2019/2/13
N2 - The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed $Z$ boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by $W$ bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2-3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta ($p_{\rm T}$). The precision of the relative jet energy scale is 1-2% for $200~{\rm GeV} < p_{\rm T} < 2~{\rm TeV}$, while that of the mass scale is 2-10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10-15% over the same $p_{\rm T}$ range.
AB - The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed $Z$ boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by $W$ bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2-3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta ($p_{\rm T}$). The precision of the relative jet energy scale is 1-2% for $200~{\rm GeV} < p_{\rm T} < 2~{\rm TeV}$, while that of the mass scale is 2-10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10-15% over the same $p_{\rm T}$ range.
U2 - 10.1140/epjc/s10052-019-6632-8
DO - 10.1140/epjc/s10052-019-6632-8
M3 - Article
SN - 1434-6044
VL - C79
SP - 135
JO - The European Physical Journal C (EPJ C)
JF - The European Physical Journal C (EPJ C)
IS - 2
M1 - Aaboud:2018kfi
ER -