TY - JOUR
T1 - Infant BMI peak as a predictor of overweight and obesity at age 2 years in a Chinese community-based cohort
AU - Sun, Jie
AU - Nwaru, Bright I
AU - Hua, Jing
AU - Li, Xiaohong
AU - Wu, Zhuochun
PY - 2017/10/1
Y1 - 2017/10/1
N2 - Objectives Infant body mass index (BMI) peak has proven to be a useful indicator for predicting childhood obesity risk in American and European populations. However, it has not been assessed in China. We characterised infant BMI trajectories in a Chinese longitudinal cohort and evaluated whether BMI peak can predict overweight and obesity at age 2 years.
Methods Serial measurements (n=6–12) of weight and length were taken from healthy term infants (n=2073) in a birth cohort established in urban Shanghai. Measurements were used to estimate BMI growth curves from birth to 13.5 months using a polynomial regression model. BMI peak characteristics, including age (in months) and magnitude (BMI, in kg/m2) at peak and prepeak velocities (in kg/m2/month), were estimated. The relationship between infant BMI peak and childhood BMI at age 2 years was examined using binary logistic analysis.
Results Mean age at peak BMI was 7.61 months, with a magnitude of 18.33 kg/m2. Boys (n=1022) had a higher average peak BMI (18.60 vs 18.07 kg/m2, p<0.001) and earlier average achievement of peak value (7.54 vs 7.67 months, p<0.05) than girls (n=1051). With 1 kg/m2 increase in peak BMI and 1 month increase in peak time, the risk of overweight at age 2 years increased by 2.11 times (OR 3.11; 95% CI 2.64 to 3.66) and 35% (OR 1.35; 95% CI 1.21 to 1.50), respectively. Similarly, higher BMI magnitude (OR 2.69; 95% CI 2.00 to 3.61) and later timing of infant BMI peak (OR 1.35; 95% CI 1.08 to 1.68) were associated with an increased risk of childhood obesity at age 2 years.
Conclusions We have shown that infant BMI peak is valuable for predicting early childhood overweight and obesity in urban Shanghai. Because this is the first Chinese community-based cohort study of this nature, future research is required to examine infant populations in other areas of China.
AB - Objectives Infant body mass index (BMI) peak has proven to be a useful indicator for predicting childhood obesity risk in American and European populations. However, it has not been assessed in China. We characterised infant BMI trajectories in a Chinese longitudinal cohort and evaluated whether BMI peak can predict overweight and obesity at age 2 years.
Methods Serial measurements (n=6–12) of weight and length were taken from healthy term infants (n=2073) in a birth cohort established in urban Shanghai. Measurements were used to estimate BMI growth curves from birth to 13.5 months using a polynomial regression model. BMI peak characteristics, including age (in months) and magnitude (BMI, in kg/m2) at peak and prepeak velocities (in kg/m2/month), were estimated. The relationship between infant BMI peak and childhood BMI at age 2 years was examined using binary logistic analysis.
Results Mean age at peak BMI was 7.61 months, with a magnitude of 18.33 kg/m2. Boys (n=1022) had a higher average peak BMI (18.60 vs 18.07 kg/m2, p<0.001) and earlier average achievement of peak value (7.54 vs 7.67 months, p<0.05) than girls (n=1051). With 1 kg/m2 increase in peak BMI and 1 month increase in peak time, the risk of overweight at age 2 years increased by 2.11 times (OR 3.11; 95% CI 2.64 to 3.66) and 35% (OR 1.35; 95% CI 1.21 to 1.50), respectively. Similarly, higher BMI magnitude (OR 2.69; 95% CI 2.00 to 3.61) and later timing of infant BMI peak (OR 1.35; 95% CI 1.08 to 1.68) were associated with an increased risk of childhood obesity at age 2 years.
Conclusions We have shown that infant BMI peak is valuable for predicting early childhood overweight and obesity in urban Shanghai. Because this is the first Chinese community-based cohort study of this nature, future research is required to examine infant populations in other areas of China.
U2 - 10.1136/bmjopen-2016-015122
DO - 10.1136/bmjopen-2016-015122
M3 - Article
VL - 7
SP - e015122
JO - BMJ Open
JF - BMJ Open
SN - 2044-6055
IS - 10
ER -