Abstract
Original language | English |
---|---|
Pages (from-to) | 1-22 |
Number of pages | 22 |
Journal | Expert Reviews in Molecular Medicine |
Volume | 8 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- immunoglobulin E
- inducible nitric oxide synthase
- interleukin 12
- interleukin 12p40
- interleukin 13
- interleukin 1beta
- interleukin 23
- interleukin 4
- leukocyte antigen
- malaria vaccine
- tumor necrosis factor alpha
- anemia
- brain malaria
- cachexia
- cell activation
- cell damage
- cell specificity
- correlation analysis
- cytokine production
- disease severity
- endothelium cell
- erythrocyte deformability
- genetic polymorphism
- genetic variability
- hemolysis
- host parasite interaction
- host resistance
- human
- immune response
- immunopathogenesis
- immunopathology
- inflammation
- malaria
- medical research
- nonhuman
- parasite virulence
- Plasmodium falciparum
- priority journal
- review
- risk assessment
- signal transduction
- Th2 cell
- thermoregulation
- upregulation
- Anemia
- Animals
- Disease Models, Animal
- Host-Parasite Relations
- Humans
- Malaria
- Mice
- Plasmodium
- Animalia
Fingerprint
Dive into the research topics of 'Insights into the immunopathogenesis of malaria using mouse models: Expert Reviews in Molecular Medicine'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Insights into the immunopathogenesis of malaria using mouse models : Expert Reviews in Molecular Medicine. / Lamb, T.J.; Brown, D.E.; Potocnik, A.J. et al.
In: Expert Reviews in Molecular Medicine, Vol. 8, No. 6, 2006, p. 1-22.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Insights into the immunopathogenesis of malaria using mouse models
T2 - Expert Reviews in Molecular Medicine
AU - Lamb, T.J.
AU - Brown, D.E.
AU - Potocnik, A.J.
AU - Langhorne, J.
N1 - Cited By :46 Export Date: 11 March 2015 CODEN: ERMMF Correspondence Address: Langhorne, J.; Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; email: jlangho@nimr.mrc.ac.uk Chemicals/CAS: immunoglobulin E, 37341-29-0; inducible nitric oxide synthase, 501433-35-8; interleukin 12, 138415-13-1; interleukin 13, 148157-34-0 References: (2006), http://mosquito.who.int/cmc_upload/0/000/015/372/RBMInfosheet_1.htm, WHO Roll Back MalariaSnow, R.W., Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population (1999) Bull World Health Organ, 77, pp. 624-640. , PubMed: 10516785; Engwerda, C., Experimental models of cerebral malaria (2005) Curr Top Microbiol Immunol, 297, pp. 103-143. , PubMed: 16265904; Craig, A., Scherf, A., Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion (2001) Mol Biochem Parasitol, 115, pp. 129-143. , PubMed: 11420100; Maeno, Y., IgE deposition in brain microvessels and on parasitized erythrocytes from cerebral malaria patients (2000) Am J Trop Med Hyg, 63, pp. 128-132. , PubMed: 11388503; Rowe, J.A., P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1 (1997) Nature, 388, pp. 292-295. , PubMed: 9230440; Cockburn, I.A., A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria (2004) Proc Natl Acad Sci U S A, 101, pp. 272-277. , PubMed: 14694201; Rowe, J.A., Short report: Positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates (2002) Am J Trop Med Hyg, 66, pp. 458-460. , PubMed: 12201576; Severe and complicated malaria (1990) Trans R Soc Trop Med Hyg, 84 (SUPPL. 2), pp. 1-65. , WHO World Health Organization, Division of Control of Tropical Diseases. PubMed: 2219249; Turner, G., Cerebral malaria (1997) Brain Pathol, 7, pp. 569-582. , PubMed: 9034566; Taylor, T.E., Differentiating the pathologies of cerebral malaria by postmortem parasite counts (2004) Nat Med, 10, pp. 143-145. , PubMed: 14745442; Grau, G.E., Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria (2003) J Infect Dis, 187, pp. 461-466. , PubMed: 12552430; Patnaik, J.K., Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria (1994) Am J Trop Med Hyg, 51, pp. 642-647. , PubMed: 7985757; Clark, I.A., Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children (2003) Malar J, 2, p. 6. , PubMed: 12716455; English, M., Newton, C.R., Malaria: Pathogenicity and disease (2002) Chem Immunol, 80, pp. 50-69. , PubMed: 12058651; Anstey, N.M., Pulmonary manifestations of uncomplicated falciparum and vivax malaria: Cough, small airways obstruction, impaired gas transfer, and increased pulmonary phagocytic activity (2002) J Infect Dis, 185, pp. 1326-1334. , PubMed: 12001051; Maitland, K., Marsh, K., Pathophysiology of severe malaria in children (2004) Acta Trop, 90, pp. 131-140. , PubMed: 15177139; Mackintosh, C.L., Beeson, J.G., Marsh, K., Clinical features and pathogenesis of severe malaria (2004) Trends Parasitol, 20, pp. 597-603. , PubMed: 15522670; English, M., Acidosis in severe childhood malaria (1997) Qjm, 90, pp. 263-270. , PubMed: 9307760; Maguire, G.P., Lung injury in uncomplicated and severe falciparum malaria: A longitudinal study in papua, Indonesia (2005) J Infect Dis, 192, pp. 1966-1974. , PubMed: 16267769; Maitland, K., Bejon, P., Newton, C.R., Malaria (2003) Curr Opin Infect Dis, 16, pp. 389-395. , PubMed: 14501990; Bojang, K.A., Management of severe malarial anaemia in Gambian children (1997) Trans R Soc Trop Med Hyg, 91, pp. 557-561. , PubMed: 9463667; Jakeman, G.N., Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes (1999) Parasitology, 119 (PART 2), pp. 127-133. , PubMed: 10466119; Snow, R.W., The global distribution of clinical episodes of Plasmodium falciparum malaria (2005) Nature, 434, pp. 214-217. , PubMed: 15759000; Beale, G.H., Carter, R., Walliker, D., Genetics (1978) Rodent Malaria, pp. 213-245. , (Killick-Kendrick, R. and Peters, W., eds), Academic Press Inc., London; Landau, I., Boulard, Y., Life cycles and morphology (1978) Rodent Malaria, pp. 53-84. , (Killick-Kendrick, R. and Peters, W., eds), Academic Press Inc., London; Kern, P., Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria (1989) Am J Med, 87, pp. 139-143. , PubMed: 2667356; Lyke, K.E., Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls (2004) Infect Immun, 72, pp. 5630-5637. , PubMed: 15385460; Mshana, R.N., Cytokines in the pathogenesis of malaria: Levels of IL-I beta, IL-4, IL-6, TNF-alpha and IFN-gamma in plasma of healthy individuals and malaria patients in a holoendemic area (1991) J Clin Lab Immunol, 34, pp. 131-139. , PubMed: 1667945; Malaguarnera, L., Plasma levels of interleukin-12 (IL-12), interleukin-18 (IL-18) and transforming growth factor beta (TGF-beta) in Plasmodium falciparum malaria (2002) Eur Cytokine Netw, 13, pp. 425-430. , PubMed: 12517727; Chaiyaroj, S.C., Reduced levels of transforming growth factor-beta1, interleukin-12 and increased migration inhibitory factor are associated with severe malaria (2004) Acta Trop, 89, pp. 319-327. , PubMed: 14744558; Kojima, S., A potential role of interleukin 18 in severe falciparum malaria (2004) Acta Trop, 89, pp. 279-284. , PubMed: 14744554; Artavanis-Tsakonas, K., Riley, E.M., Innate immune response to malaria: Rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes (2002) J Immunol, 169, pp. 2956-2963. , PubMed: 12218109; Baratin, M., Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum (2005) Proc Natl Acad Sci U S A, 102, pp. 14747-14752. , PubMed: 16203971; Artavanis-Tsakonas, K., Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes (2003) J Immunol, 171, pp. 5396-5405. , PubMed: 14607943; Goodier, M.R., Cytokine profiles for human V gamma 9+ T cells stimulated by Plasmodium falciparum (1995) Parasite Immunol, 17, pp. 413-423. , PubMed: 7501422; Jones, S.M., Goodier, M.R., Langhorne, J., The response of gamma delta T cells to Plasmodium falciparum is dependent on activated CD4+ T cells and the recognition of MHC class I molecules (1996) Immunology, 89, pp. 405-412. , PubMed: 8958054; Thuma, P.E., Serum neopterin, interleukin-4, and interleukin-6 concentrations in cerebral malaria patients and the effect of iron chelation therapy (1996) Am J Trop Med Hyg, 54, pp. 164-168. , PubMed: 8619442; Perlmann, H., IgE elevation and IgE anti-malarial antibodies in Plasmodium falciparum malaria: Association of high IgE levels with cerebral malaria (1994) Clin Exp Immunol, 97, pp. 284-292. , PubMed: 8050178; Kwiatkowski, D., TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria (1990) Lancet, 336, pp. 1201-1204. , PubMed: 1978068; McGuire, W., Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria (1994) Nature, 371, pp. 508-510. , PubMed: 7935762; Knight, J.C., A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria (1999) Nat Genet, 22, pp. 145-150. , PubMed: 10369255; Heddini, A., Malaria pathogenesis: A jigsaw with an increasing number of pieces (2002) Int J Parasitol, 32, pp. 1587-1598. , PubMed: 12435443; Krishna, S., Lactic acidosis and hypoglycaemia in children with severe malaria: Pathophysiological and prognostic significance (1994) Trans R Soc Trop Med Hyg, 88, pp. 67-73. , PubMed: 8154008; McGuire, W., Levels of tumour necrosis factor and soluble TNF receptors during malaria fever episodes in the community (1998) Trans R Soc Trop Med Hyg, 92, pp. 50-53. , PubMed: 9692151; Kwiatkowski, D., Anti-TNF therapy inhibits fever in cerebral malaria (1993) Q J Med, 86, pp. 91-98. , PubMed: 8329024; Langhorne, J., Quin, S.J., Sanni, L.A., Mouse models of blood-stage malaria infections: Immune responses and cytokines involved in protection and pathology (2002) Chem Immunol, 80, pp. 204-228. , PubMed: 12058640; Peyron, F., High levels of circulating IL-10 in human malaria (1994) Clin Exp Immunol, 95, pp. 300-303. , PubMed: 8306505; Kurtzhals, J.A., Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria (1998) Lancet, 351, pp. 1768-1772. , PubMed: 9635949; Nussenblatt, V., Anemia and interleukin-10, tumor necrosis factor alpha, and erythropoietin levels among children with acute, uncomplicated Plasmodium falciparum malaria (2001) Clin Diagn Lab Immunol, 8, pp. 1164-1170. , PubMed: 11687458; Othoro, C., A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya (1999) J Infect Dis, 179, pp. 279-282. , PubMed: 9841855; Dodoo, D., Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria (2002) J Infect Dis, 185, pp. 971-979. , PubMed: 11920322; Li, C., Pathology of Plasmodium chabaudi chabaudi infection and mortality in interleukin-10-deficient mice are ameliorated by anti-tumor necrosis factor alpha and exacerbated by anti-transforming growth factor beta antibodies (2003) Infect Immun, 71, pp. 4850-4856. , PubMed: 12933825; Omer, F.M., Riley, E.M., Transforming growth factor beta production is inversely correlated with severity of murine malaria infection (1998) J Exp Med, 188, pp. 39-48. , PubMed: 9653082; Omer, F.M., de Souza, J.B., Riley, E.M., Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections (2003) J Immunol, 171, pp. 5430-5436. , PubMed: 14607947; Walther, M., Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection (2005) Immunity, 23, pp. 287-296. , PubMed: 16169501; Hisaeda, H., Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells (2004) Nat Med, 10, pp. 29-30. , PubMed: 14702631; Langhorne, J., Dendritic cells, proinflammatory responses, and antigen presentation in a rodent malaria infection (2004) Immunol Rev, 201, pp. 35-47. , PubMed: 15361231; Korbel, D.S., Finney, O.C., Riley, E.M., Natural killer cells and innate immunity to protozoan pathogens (2004) Int J Parasitol, 34, pp. 1517-1528. , PubMed: 15582528; O'Neill, L.A., TLRs: Professor Mechnikov, sit on your hat (2004) Trends Immunol, 25, pp. 687-693. , PubMed: 15530840; Pichyangkul, S., Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway (2004) J Immunol, 172, pp. 4926-4933. , PubMed: 15067072; Krishnegowda, G., Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: Cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity (2005) J Biol Chem, 280, pp. 8606-8616. , PubMed: 15623512; Adachi, K., Plasmodium berghei infection in mice induces liver injury by an IL-12-and toll-like receptor/myeloid differentiation factor 88-dependent mechanism (2001) J Immunol, 167, pp. 5928-5934. , PubMed: 11698470; Schofield, L., Hackett, F., Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites (1993) J Exp Med, 177, pp. 145-153. , PubMed: 8418196; Coban, C., Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin (2005) J Exp Med, 201, pp. 19-25. , PubMed: 15630134; Yarovinsky, F., TLR11 activation of dendritic cells by a protozoan profilin-like protein (2005) Science, 308, pp. 1626-1629. , PubMed: 15860593; Hoebe, K., CD36 is a sensor of diacylglycerides (2005) Nature, 433, pp. 523-527. , PubMed: 15690042; Cross, C.E., Langhorne, J., Plasmodium chabaudi chabaudi (AS): Inflammatory cytokines and pathology in an erythrocytic-stage infection in mice (1998) Exp Parasitol, 90, pp. 220-229. , PubMed: 9806866; Cordeiro, R.S., Plasmodium berghei: Physiopathological changes during infections in mice (1983) Ann Trop Med Parasitol, 77, pp. 455-465. , PubMed: 6362586; Amani, V., Cloned lines of Plasmodium berghei ANKA differ in their abilities to induce experimental cerebral malaria (1998) Infect Immun, 66, pp. 4093-4099. , PubMed: 9712753; Sherry, B.A., Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo (1995) J Inflamm, 45, pp. 85-96. , PubMed: 7583361; Piguet, P.F., Kan, C.D., Vesin, C., Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice (2002) Lab Invest, 82, pp. 1155-1166. , PubMed: 12218076; Li, C., Langhorne, J., Tumor necrosis factor alpha p55 receptor is important for development of memory responses to blood-stage malaria infection (2000) Infect Immun, 68, pp. 5724-5730. , PubMed: 10992477; Wajant, H., Pfizenmaier, K., Scheurich, P., Tumor necrosis factor signaling (2003) Cell Death Differ, 10, pp. 45-65. , PubMed: 12655295; Leon, L.R., Invited review: Cytokine regulation of fever: Studies using gene knockout mice (2002) J Appl Physiol, 92, pp. 2648-2655. , PubMed: 12015385; Utsuyama, M., Hirokawa, K., Differential expression of various cytokine receptors in the brain after stimulation with LPS in young and old mice (2002) Exp Gerontol, 37, pp. 411-420. , PubMed: 11772528; de Souza, J.B., Riley, E.M., Cerebral malaria: The contribution of studies in animal models to our understanding of immunopathogenesis (2002) Microbes Infect, 4, pp. 291-300. , PubMed: 11909739; Bauer, P.R., Regulation of endothelial cell adhesion molecule expression in an experimental model of cerebral malaria (2002) Microcirculation, 9, pp. 463-470. , PubMed: 12483543; Franke-Fayard, B., Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration (2005) Proc Natl Acad Sci U S A, 102, pp. 11468-11473. , PubMed: 16051702; Belnoue, E., CCR5 deficiency decreases susceptibility to experimental cerebral malaria (2003) Blood, 101, pp. 4253-4259. , PubMed: 12560237; Pais, T.F., Chatterjee, S., Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation (2005) J Neuroimmunol, 163, pp. 73-83. , PubMed: 15885309; Curfs, J.H., Tumour necrosis factor-alpha and macrophages in Plasmodium berghei-induced cerebral malaria (1993) Parasitology, 107 (PART 2), pp. 125-134. , PubMed: 8414666; Belnoue, E., On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria (2002) J Immunol, 169, pp. 6369-6375. , PubMed: 12444144; Hanum, P.S., Hayano, M., Kojima, S., Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: Early chemokine expression in the brain (2003) Int Immunol, 15, pp. 633-640. , PubMed: 12697663; Piguet, P.F., Role of CD40-CVD40L in mouse severe malaria (2001) Am J Pathol, 159, pp. 733-742. , PubMed: 11485931; Lou, J., Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria (1998) Eur J Immunol, 28, pp. 3989-4000. , PubMed: 9862335; Engwerda, C.R., Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria (2002) J Exp Med, 195, pp. 1371-1377. , PubMed: 12021316; Sanni, L.A., Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? (1999) J Infect Dis, 179, pp. 217-222. , PubMed: 9841842; Potter, S.M., Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections (2005) Infect Immun, 73, pp. 4941-4947. , PubMed: 16041008; Favre, N., Ryffel, B., Rudin, W., The development of murine cerebral malaria does not require nitric oxide production (1999) Parasitology, 118 (PART 2), pp. 135-138. , PubMed: 10028526; Favre, N., Role of ICAM-1 (CD54) in the development of murine cerebral malaria (1999) Microbes Infect, 1, pp. 961-968. , PubMed: 10617927; Sun, G., Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria (2003) Infect Immun, 71, pp. 6553-6561. , PubMed: 14573677; Mackinnon, M.J., Walker, P.R., Rowe, J.A., Plasmodium chabaudi: Rosetting in a rodent malaria model (2002) Exp Parasitol, 101, pp. 121-128. , PubMed: 12427466; Nitcheu, J., Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis (2003) J Immunol, 170, pp. 2221-2228. , PubMed: 12574396; Yanez, D.M., Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria (1996) J Immunol, 157, pp. 1620-1624. , PubMed: 8759747; Nussenzweig, V.S., Cochrane, A.H., Lustig, H.J., Immunological responses (1978) Rodent Malaria, pp. 247-307. , (Killick-Kendrick, R. and Peters, W., eds), Academic Press Inc., London; Gilks, C.F., Walliker, D., Newbold, C.I., Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi - A rodent malaria model (1990) Parasite Immunol, 12, pp. 45-64. , PubMed: 2314922; Cox, J., Semoff, S., Hommel, M., Plasmodium chabaudi: A rodent malaria model for in-vivo and in-vitro cytoadherence of malaria parasites in the absence of knobs (1987) Parasite Immunol, 9, pp. 543-561. , PubMed: 3684327; Desowitz, R.S., Barnwell, J.W., Plasmodium berghei: Deep vascular sequestration of young forms in the heart and kidney of the white rat (1976) Ann Trop Med Parasitol, 70, pp. 475-476. , PubMed: 793548; Coquelin, F., Final stage of maturation of the erythrocytic schizonts of rodent Plasmodium in the lungs (1999) C R Acad Sci III, 322, pp. 55-62. , PubMed: 10047954; Mota, M.M., Plasmodium chabaudi-infected erythrocytes adhere to CD36 and bind to microvascular endothelial cells in an organ-specific way (2000) Infect Immun, 68, pp. 4135-4144. , PubMed: 10858230; Vuong, P.N., Development of irreversible lesions in the brain, heart and kidney following acute and chronic murine malaria infection (1999) Parasitology, 119 (PART 6), pp. 543-553. , PubMed: 10633915; Eiam-Ong, S., Malarial nephropathy (2003) Semin Nephrol, 23, pp. 21-33. , PubMed: 12563598; Sinniah, R., Rui-Mei, L., Kara, A., Up-regulation of cytokines in glomerulonephritis associated with murine malaria infection (1999) Int J Exp Pathol, 80, pp. 87-95. , PubMed: 10469263; Rui-Mei, L., Kara, A.U., Sinniah, R., Dysregulation of cytokine expression in tubulointerstitial nephritis associated with murine malaria (1998) Kidney Int, 53, pp. 845-852. , PubMed: 9551390; Suzuki, Y., Pre-existing glomerular immune complexes induce polymorphonuclear cell recruitment through an Fc receptor-dependent respiratory burst: Potential role in the perpetuation of immune nephritis (2003) J Immunol, 170, pp. 3243-3253. , PubMed: 12626583; Rencricca, N.J., Coleman, R.M., Altered erythropoiesis during the course of virulent murine malaria (1979) Proc Soc Exp Biol Med, 162, pp. 424-428. , PubMed: 390536; Yap, G.S., Stevenson, M.M., Blood transfusion alters the course and outcome of Plasmodium chabaudi AS infection in mice (1994) Infect Immun, 62, pp. 3761-3765. , PubMed: 8063391; Chang, K.H., Tam, M., Stevenson, M.M., Modulation of the course and outcome of blood-stage malaria by erythropoietin-induced reticulocytosis (2004) J Infect Dis, 189, pp. 735-743. , PubMed: 14767829; Chang, K.H., Tam, M., Stevenson, M.M., Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors (2004) Blood, 103, pp. 3727-3735. , PubMed: 14739226; Burgmann, H., Serum levels of erythropoietin in acute Plasmodium falciparum malaria (1996) Am J Trop Med Hyg, 54, pp. 280-283. , PubMed: 8600766; Abdalla, S., The anaemia of P. falciparum malaria (1980) Br J Haematol, 46, pp. 171-183. , PubMed: 7000157; Srichaikul, T., Panikbutr, N., Jeumtrakul, P., Bone-marrow changes in human malaria (1967) Ann Trop Med Parasitol, 61, pp. 40-51. , PubMed: 6051537; Price, R.N., Factors contributing to anemia after uncomplicated falciparum malaria (2001) Am J Trop Med Hyg, 65, pp. 614-622. , PubMed: 11716124; Evans, K.J., Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes (2006) Blood, 107, pp. 1192-1199. , PubMed: 16210332; Wickramasinghe, S.N., The bone marrow in human cerebral malaria: Parasite sequestration within sinusoids (1987) Br J Haematol, 66, pp. 295-306. , PubMed: 3304391; Shi, Q., Alteration in host cell tropism limits the efficacy of immunization with a surface protein of malaria merozoites (2005) Infect Immun, 73, pp. 6363-6371. , PubMed: 16177307; del Portillo, H.A., Variant genes and the spleen in Plasmodium vivax malaria (2004) Int J Parasitol, 34, pp. 1547-1554. , PubMed: 15582531; Weiss, L., Johnson, J., Weidanz, W., Mechanisms of splenic control of murine malaria: Tissue culture studies of the erythropoietic interplay of spleen, bone marrow, and blood in lethal (strain 17XL) Plasmodium yoelii malaria in BALB/c mice (1989) Am J Trop Med Hyg, 41, pp. 135-143. , PubMed: 2774062; Silverman, P.H., Schooley, J.C., Mahlmann, L.J., Murine malaria decreases hemopoietic stem cells (1987) Blood, 69, pp. 408-413. , PubMed: 3801660; Yap, G.S., Stevenson, M.M., Plasmodium chabaudi AS: Erythropoietic responses during infection in resistant and susceptible mice (1992) Exp Parasitol, 75, pp. 340-352. , PubMed: 1426136; Miller, K.L., Tumor necrosis factor alpha and the anemia associated with murine malaria (1989) Infect Immun, 57, pp. 1542-1546. , PubMed: 2707858; Yap, G.S., Stevenson, M.M., Inhibition of in vitro erythropoiesis by soluble mediators in Plasmodium chabaudi AS malaria: Lack of a major role for interleukin 1, tumor necrosis factor alpha, and gamma interferon (1994) Infect Immun, 62, pp. 357-362. , PubMed: 8300197; Linke, A., Plasmodium chabaudi chabaudi: Differential susceptibility of gene-targeted mice deficient in IL-10 to an erythrocytic-stage infection (1996) Exp Parasitol, 84, pp. 253-263. , PubMed: 8932775; Mohan, K., Stevenson, M.M., Dyserythropoiesis and severe anaemia associated with malaria correlate with deficient interleukin-12 production (1998) Br J Haematol, 103, pp. 942-949. , PubMed: 9886304; Mohan, K., Stevenson, M.M., Interleukin-12 corrects severe anemia during blood-stage Plasmodium chabaudi AS in susceptible A/J mice (1998) Exp Hematol, 26, pp. 45-52. , PubMed: 9430513; Martiney, J.A., Macrophage migration inhibitory factor release by macrophages after ingestion of Plasmodium chabaudi-infected erythrocytes: Possible role in the pathogenesis of malarial anemia (2000) Infect Immun, 68, pp. 2259-2267. , PubMed: 10722628; Villeval, J.L., Lew, A., Metcalf, D., Changes in hemopoietic and regulator levels in mice during fatal or nonfatal malarial infections. I. Erythropoietic populations (1990) Exp Parasitol, 71, pp. 364-374. , PubMed: 2146141; Abdalla, S.H., Wickramasinghe, S.N., Weatherall, D.J., The deoxyuridine suppression test in severe anaemia following Plasmodium falciparum malaria (1984) Trans R Soc Trop Med Hyg, 78, pp. 60-63. , PubMed: 6369652; Clark, I.A., Chaudhri, G., Tumour necrosis factor may contribute to the anaemia of malaria by causing dyserythropoiesis and erythrophagocytosis (1988) Br J Haematol, 70, pp. 99-103. , PubMed: 3179231; Mackinnon, M.J., Quantifying genetic and nongenetic contributions to malarial infection in a Sri Lankan population (2000) Proc Natl Acad Sci U S A, 97, pp. 12661-12666. , PubMed: 11035799; Marsh, K., Snow, R.W., Malaria transmission and morbidity (1999) Parassitologia, 41, pp. 241-246. , PubMed: 10697862; Snow, R.W., Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa (1997) Lancet, 349, pp. 1650-1654. , PubMed: 9186382; Min-Co, G., Gros, P., Erythrocyte variants and the nature of their malaria protective effect (2005) Cell Microbiol, 7, pp. 753-763. , PubMed: 15888079; Fortin, A., Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8 (1997) Nat Genet, 17, pp. 382-383. , PubMed: 9398835; Foote, S.J., Mouse loci for malaria-induced mortality and the control of parasitaemia (1997) Nat Genet, 17, pp. 380-381. , PubMed: 9398834; Burt, R.A., Temporal expression of an H2-linked locus in host response to mouse malaria (1999) Immunogenetics, 50, pp. 278-285. , PubMed: 10630291; Stevenson, M.M., IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism (1995) J Immunol, 155, pp. 2545-2556. , PubMed: 7650384; Stevenson, M.M., Macrophage activation during Plasmodium chabaudi AS infection in resistant C57BL/6 and susceptible A/J mice (1992) Infect Immun, 60, pp. 1193-1201. , PubMed: 1311705; Sam, H., Stevenson, M.M., Early IL-12 p70, but not p40, production by splenic macrophages correlates with host resistance to blood-stage Plasmodium chabaudi AS malaria (1999) Clin Exp Immunol, 117, pp. 343-349. , PubMed: 10444268; Mohan, K., Moulin, P., Stevenson, M.M., Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection (1997) J Immunol, 159, pp. 4990-4998. , PubMed: 9366426; Tsutsui, N., Kamiyama, T., Transforming growth factor beta-induced failure of resistance to infection with blood-stage Plasmodium chabaudi in mice (1999) Infect Immun, 67, pp. 2306-2311. , PubMed: 10225888; Gardner, J.P., Variant antigens and endothelial receptor adhesion in Plasmodium falciparum (1996) Proc Natl Acad Sci U S A, 93, pp. 3503-3508. , PubMed: 8622966; Luxemburger, C., The epidemiology of severe malaria in an area of low transmission in Thailand (1997) Trans R Soc Trop Med Hyg, 91, pp. 256-262. , PubMed: 9231189; Smith, T., Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium (2001) Am J Trop Med Hyg, 64, pp. 262-267. , PubMed: 11463113; Maitland, K., The interaction between Plasmodium falciparum and P. vivax in children on Espiritu Santo island, Vanuatu (1996) Trans R Soc Trop Med Hyg, 90, pp. 614-620. , PubMed: 9015495; Ofosu-Okyere, A., Novel Plasmodium falciparum clones and rising clone multiplicities are associated with the increase in malaria morbidity in Ghanaian children during the transition into the high transmission season (2001) Parasitology, 123, pp. 113-123. , PubMed: 11510676; Mackinnon, M.J., Read, A.F., Genetic relationships between parasite virulence and transission in the rodent malaria Plasmodium chabaudi (1999) Evolution, 53, pp. 689-703; Allan, R.J., Strain variation in tumor necrosis factor induction by parasites from children with acute falciparum malaria (1995) Infect Immun, 63, pp. 1173-1175. , PubMed: 7890368; Rowe, J.A., Implications of mycoplasma contamination in Plasmodium falciparum cultures and methods for its detection and eradication (1998) Mol Biochem Parasitol, 92, pp. 177-180. , PubMed: 9574920; Robben, P.M., Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype (2004) J Immunol, 172, pp. 3686-3694. , PubMed: 15004172; Manca, C., Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis (2004) Infect Immun, 72, pp. 5511-5514. , PubMed: 15322056; Shear, H.L., Role of IFN-gamma in lethal and nonlethal malaria in susceptible and resistant murine hosts (1989) J Immunol, 143, pp. 2038-2044. , PubMed: 2506274; Kobayashi, F., Production of interleukin 10 during malaria caused by lethal and nonlethal variants of Plasmodium yoelii yoelii (1996) Parasitol Res, 82, pp. 385-391. , PubMed: 8738275; Jennings, V.M., Lal, A.A., Hunter, R.L., Evidence for multiple pathologic and protective mechanisms of murine cerebral malaria (1998) Infect Immun, 66, pp. 5972-5979. , PubMed: 9826380; Mackinnon, M.J., Read, A.F., Immunity promotes virulence evolution in a malaria model (2004) PLoS Biol, 2, pp. E230. , PubMed: 15221031; Gandon, S., Imperfect vaccines and the evolution of pathogen virulence (2001) Nature, 414, pp. 751-756. , PubMed: 11742400; Dieckmann, U., (2002) Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, , eds (Cambridge Studies in Adaptive Dynamics), Cambridge University Press, Cambridge, UK; Maggio-Price, L., Brookoff, D., Weiss, L., Changes in hematopoietic stem cells in bone marrow of mice with Plasmodium berghei malaria (1985) Blood, 66, pp. 1080-1085. , PubMed: 3902119; Asami, M., A comparative study of the kinetic changes of hemopoietic stem cells in mice infected with lethal and non-lethal malaria (1992) Int J Parasitol, 22, pp. 43-47. , PubMed: 1563919; Sanni, L.A., Cerebral edema and cerebral hemorrhages in interleukin-10-deficient mice infected with Plasmodium chabaudi (2004) Infect Immun, 72, pp. 3054-3058. , PubMed: 15102820; Chang, K.H., Stevenson, M.M., Malarial anaemia: Mechanisms and implications of insufficient erythropoiesis during blood-stage malaria (2004) Int J Parasitol, 34, pp. 1501-1516. , PubMed: 15582527; Howard, R.J., Mitchell, G.F., Accelerated clearance of uninfected red cells from Plasmodium berghei-infected mouse blood in normal mice (1979) Aust J Exp Biol Med Sci, 57, pp. 455-457. , PubMed: 548017; Hunter Jr., K.W., Winkelstein, J.A., Simpson, T.W., Serum opsonic activity in rodent malaria: Functional and immunochemical characteristics in vitro (1979) J Immunol, 123, pp. 2582-2587. , PubMed: 387873; Ubalee, R., Strong association of a tumor necrosis factor-alpha promoter allele with cerebral malaria in Myanmar (2001) Tissue Antigens, 58, pp. 407-410. , PubMed: 11929592; McGuire, W., Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles (1999) J Infect Dis, 179, pp. 287-290. , PubMed: 9841857; Kun, J.F., Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria (1998) Lancet, 351, pp. 265-266. , PubMed: 9457101; Burgner, D., Inducible nitric oxide synthase polymorphism and fatal cerebral malaria (1998) Lancet, 352, pp. 1193-1194. , PubMed: 9777841; Walley, A.J., Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study (2004) Eur J Hum Genet, 12, pp. 132-138. , PubMed: 14673470; Gyan, B., Polymorphisms in interleukin-1beta and interleukin-1 receptor antagonist genes and malaria in Ghanaian children (2002) Scand J Immunol, 56, pp. 619-622. , PubMed: 12472674; Morahan, G., A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production (2002) Genes Immun, 3, pp. 414-418. , PubMed: 12424623; Gyan, B.A., Allelic polymorphisms in the repeat and promoter regions of the interleukin-4 gene and malaria severity in Ghanaian children (2004) Clin Exp Immunol, 138, pp. 145-150. , PubMed: 15373917; Ohashi, J., A single-nucleotide substitution from C to T at position -1055 in the IL-13 promoter is associated with protection from severe malaria in Thailand (2003) Genes Immun, 4, pp. 528-531. , PubMed: 14551608; Hill, A.V., Common west African HLA antigens are associated with protection from severe malaria (1991) Nature, 352, pp. 595-600. , PubMed: 1865923
PY - 2006
Y1 - 2006
N2 - Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines. © 2006 Cambridge University Press.
AB - Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines. © 2006 Cambridge University Press.
KW - immunoglobulin E
KW - inducible nitric oxide synthase
KW - interleukin 12
KW - interleukin 12p40
KW - interleukin 13
KW - interleukin 1beta
KW - interleukin 23
KW - interleukin 4
KW - leukocyte antigen
KW - malaria vaccine
KW - tumor necrosis factor alpha
KW - anemia
KW - brain malaria
KW - cachexia
KW - cell activation
KW - cell damage
KW - cell specificity
KW - correlation analysis
KW - cytokine production
KW - disease severity
KW - endothelium cell
KW - erythrocyte deformability
KW - genetic polymorphism
KW - genetic variability
KW - hemolysis
KW - host parasite interaction
KW - host resistance
KW - human
KW - immune response
KW - immunopathogenesis
KW - immunopathology
KW - inflammation
KW - malaria
KW - medical research
KW - nonhuman
KW - parasite virulence
KW - Plasmodium falciparum
KW - priority journal
KW - review
KW - risk assessment
KW - signal transduction
KW - Th2 cell
KW - thermoregulation
KW - upregulation
KW - Anemia
KW - Animals
KW - Disease Models, Animal
KW - Host-Parasite Relations
KW - Humans
KW - Malaria
KW - Mice
KW - Plasmodium
KW - Animalia
U2 - 10.1017/S1462399406010581
DO - 10.1017/S1462399406010581
M3 - Article
VL - 8
SP - 1
EP - 22
JO - Expert Reviews in Molecular Medicine
JF - Expert Reviews in Molecular Medicine
SN - 1462-3994
IS - 6
ER -