Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport

Robert Adalbert, Stefan Milde, Claire Durrant, Kunie Ando, Virginie Stygelbout, Zehra Yilmaz, Stacey Gould, Jean-Pierre Brion, Michael Coleman

Research output: Contribution to journalArticlepeer-review

Abstract

n Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.
Original languageEnglish
Pages (from-to)68-75
JournalNeurobiology of Aging
Volume68
Early online date5 Apr 2018
Publication statusPublished - Aug 2018

Fingerprint

Dive into the research topics of 'Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport'. Together they form a unique fingerprint.

Cite this