Inverse determination of the influence of fire on vegetation carbon turnover in the pantropics

Jean-françois Exbrayat, T. Luke Smallman, A. Anthony Bloom, Lindsay B. Hutley, Mathew Williams

Research output: Contribution to journalArticlepeer-review

Abstract

Fire is a major component of the terrestrial carbon cycle that has been implemented in most current global terrestrial ecosystem models (TEMs). Here, we use terrestrial carbon cycle observations to characterize the importance of fire regime gradients in the spatial distribution of ecosystem functional properties such as carbon allocation, fluxes, and turnover times in the tropics. A Bayesian model-data fusion approach is applied to an ecosystem carbon model to derive the posterior distribution of corresponding parameters for the tropics from 2000 to 2015. We perform the model-data fusion procedure twice, i.e. with and without imposing fire. Gradient of differences in model parameters and ecosystem properties in response to fire
emerge between these experiments. For example, mean annual burned fraction correlates with an increase in carbon use efficiency and reductions in carbon turnover times. Further,
our analyses reveal an increased allocation to more fire-resistant tissues in the most frequently burned regions. As fire modules are increasingly implemented in global TEMs, we recommend that model development includes a representation of the impact of fire on ecosystem properties as they may lead to large differences under climate change projections.
Original languageEnglish
JournalGlobal Biogeochemical Cycles
DOIs
Publication statusPublished - 2 Dec 2018

Fingerprint

Dive into the research topics of 'Inverse determination of the influence of fire on vegetation carbon turnover in the pantropics'. Together they form a unique fingerprint.

Cite this