Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-f. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. MauriceA. Saha, K. Tereszchuk, D. Weaver

Research output: Contribution to journalArticlepeer-review

Abstract

We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO) – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the stated measurement uncertainty (~3% for CO and ~8% for C2H6) was found for the magnitude of the enhancement of the CO and C2H6 total columns between the measured and modelled results. However, there is a small shift in time (of approximately 6 h) of arrival of the plume over Halifax between the results.
Original languageEnglish
Pages (from-to)10227-10241
Number of pages15
JournalAtmospheric Chemistry and Physics
Volume13
Issue number20
DOIs
Publication statusPublished - 18 Oct 2013

Fingerprint

Dive into the research topics of 'Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations'. Together they form a unique fingerprint.

Cite this