Isolation and characterization of equine endometrial mesenchymal stromal cells

B Elisabeth Rink, Karin R Amilon, Cristina L Esteves, Hilari M French, Elaine Watson, Christine Aurich, F Xavier Donadeu

Research output: Contribution to journalArticlepeer-review


BACKGROUND: Equine mesenchymal stromal/stem cells (MSCs) are most commonly harvested from bone marrow (BM) or adipose tissue, requiring the use of surgical procedures. By contrast, the uterus can be accessed nonsurgically, and may provide a more readily available cell source. While human endometrium is known to harbor mesenchymal precursor cells, MSCs have not been identified in equine endometrium. This study reports the isolation, culture, and characterization of MSCs from equine endometrium.

METHODS: The presence of MSC and pericyte markers in endometrial sections was determined using immunohistochemistry. Stromal cells were harvested and cultured after separation of epithelial cells from endometrial fragments using Mucin-1-bound beads. For comparison, MSCs were also harvested from BM. The expression of surface markers in endometrial and BM-derived MSCs was characterized using flow cytometry and quantitative polymerase chain reaction. MSCs were differentiated in vitro into adipogenic, chondrogenic, osteogenic, and smooth muscle lineages.

RESULTS: Typical markers of MSCs (CD29, CD44, CD90, and CD105) and pericytes (NG2 and CD146) were localized in the equine endometrium. Both endometrial and BM MSCs grew clonally and robustly expressed MSC and pericyte markers in culture while showing greatly reduced or negligible expression of hematopoietic markers (CD45, CD34) and MHC-II. Additionally, both endometrial and BM MSCs differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro, and endometrial MSCs had a distinct ability to undergo smooth muscle differentiation.

CONCLUSIONS: We have demonstrated for the first time the presence of cells in equine endometrium that fulfill the definition of MSCs. The equine endometrium may provide an alternative, easily accessible source of MSCs, not only for therapeutic regeneration of the uterus, but also for other tissues where MSCs from other sources are currently being used therapeutically.

Original languageEnglish
Article number166
JournalStem Cell Research and Therapy
Issue number1
Publication statusPublished - 12 Jul 2017


  • Mesenchymal stem cells
  • Endometrium
  • Equine
  • Horse


Dive into the research topics of 'Isolation and characterization of equine endometrial mesenchymal stromal cells'. Together they form a unique fingerprint.

Cite this