Jet energy scale and resolution measured in proton–proton collisions at √s = 13 TeV with the ATLAS detector

ATLAS Publications, T.M. Carter, M. Faucci Giannelli, A. Hasib, M.P. Heath, S. Palazzo, A. Søgaard, A. Strubig, E.P. Takeva, A.J. Taylor, N. Themistokleous, E.M. Villhauer

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb−1−1 of proton–proton collision data with a centre-of-mass energy of s=13s​=13 TeVTeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti-ktkt​ jet algorithm with radius parameter R=0.4R=0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets (∣η∣<1.2∣η∣<1.2) vary from 1% for a wide range of high-pTpT​ jets (250<pT<2000 GeV250<pT​<2000 GeV), to 5% at very low pTpT​ (20 GeV20 GeV) and 3.5% at very high pTpT​ (>2.5 TeV>2.5 TeV). The relative jet energy resolution is measured and ranges from (24±1.524±1.5)% at 20 GeVGeV to (6±0.56±0.5)% at 300 GeVGeV.
Original languageEnglish
Article number689
Pages (from-to)1-49
Number of pages49
JournalThe European Physical Journal C
Issue number8
Publication statusPublished - 3 Aug 2021


Dive into the research topics of 'Jet energy scale and resolution measured in proton–proton collisions at √s = 13 TeV with the ATLAS detector'. Together they form a unique fingerprint.

Cite this