K→(ππ)I=2 Decay Amplitude from Lattice QCD

T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Jung, C. Kelly, C. Lehner, M. Lightman, Q. Liu, A. T. Lytle, R. D. Mawhinney, C. T. Sachrajda, A. Soni, C. Sturm

Research output: Contribution to journalArticlepeer-review


We report on the first realistic \emph{ab initio} calculation of a hadronic weak decay, that of the amplitude $A_2$ for a kaon to decay into two \pi-mesons with isospin 2. We find Re$A_2=(1.436\pm 0.063_{\textrm{stat}}\pm 0.258_{\textrm{syst}})\,10^{-8}\,\textrm{GeV}$ in good agreement with the experimental result and for the hitherto unknown imaginary part we find {Im}$\,A_2=-(6.83 \pm 0.51_{\textrm{stat}} \pm 1.30_{\textrm{syst}})\,10^{-13}\,{\rm GeV}$. Moreover combining our result for Im\,$A_2$ with experimental values of Re\,$A_2$, Re\,$A_0$ and $\epsilon^\prime/\epsilon$, we obtain the following value for the unknown ratio Im\,$A_0$/Re\,$A_0$ within the Standard Model: $\mathrm{Im}\,A_0/\mathrm{Re}\,A_0=-1.63(19)_{\mathrm{stat}}(20)_{\mathrm{syst}}\times10^{-4}$. One consequence of these results is that the contribution from Im\,$A_2$ to the direct CP violation parameter $\epsilon^{\prime}$ (the so-called Electroweak Penguin, EWP, contribution) is Re$(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.52 \pm 0.49_{\textrm{stat}} \pm 1.24_{\textrm{syst}}) \times 10^{-4}$. We explain why this calculation of $A_2$ represents a major milestone for lattice QCD and discuss the exciting prospects for a full quantitative understanding of CP-violation in kaon decays.
Original languageEnglish
Article number141601
Number of pages5
JournalPhysical Review Letters
Issue number14
Publication statusPublished - 4 Apr 2012

Fingerprint Dive into the research topics of 'K→(ππ)I=2 Decay Amplitude from Lattice QCD'. Together they form a unique fingerprint.

Cite this