Kalεido: Real-Time Privacy Control for Eye-Tracking Systems

Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, Younghyun Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent advances in sensing and computing technologies have led to the rise of eye-tracking platforms. Ranging from mobiles to high-end mixed reality headsets, a wide spectrum of interactive systems now employs eye-tracking. However, eye gaze data is a rich source of sensitive information that can reveal an individual's physiological and psychological traits. Prior approaches to protecting eye-tracking data suffer from two major drawbacks: they are either incompatible with the current eye-tracking ecosystem or provide no formal privacy guarantee. In this paper, we propose Kalεido, an eye-tracking data processing system that (1) provides a formal privacy guarantee, (2) integrates seamlessly with existing eye-tracking ecosystems, and (3) operates in real-time. Kalεido acts as an intermediary protection layer in the software stack of eye-tracking systems. We conduct a comprehensive user study and trace-based analysis to evaluate Kalεido. Our user study shows that the users enjoy a satisfactory level of utility from Kalεido. Additionally, we present empirical evidence of Kalεido's effectiveness in thwarting real-world attacks on eye-tracking data.
Original languageEnglish
Title of host publication30th USENIX Security Symposium (USENIX Security 21)
PublisherUSENIX Association
Pages1793-1810
Number of pages18
ISBN (Print)9781939133243
Publication statusPublished - 1 Aug 2021
Event30th USENIX Security Symposium 2021 - Virtual event
Duration: 11 Aug 202113 Aug 2021
Conference number: 30
https://www.usenix.org/conference/usenixsecurity21

Conference

Conference30th USENIX Security Symposium 2021
Period11/08/2113/08/21
Internet address

Fingerprint

Dive into the research topics of 'Kalεido: Real-Time Privacy Control for Eye-Tracking Systems'. Together they form a unique fingerprint.

Cite this