TY - JOUR
T1 - Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNiII(L)Br and Rate/Selectivity Factors
AU - Ben-tal, Yael
AU - Lloyd-jones, Guy C.
N1 - Publisher Copyright:
© 2022 The Authors. Published by American Chemical Society.
PY - 2022/8/15
Y1 - 2022/8/15
N2 - The Ni/Ir-photocatalyzed coupling of an aryl bromide (ArBr) with an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr], [Ni], [Ir]) are found to control the rate of ArBr consumption, but not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to show that the complex undergoes Ir-photocatalyzed conversion to products (Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr. A range of competing absorption and quenching effects lead to complex correlations between the Ir and Ni catalyst loadings and the reaction rate. Differences in the Ir/Ni Beer–Lambert absorption profiles allow the rate to be increased by the use of a shorter-wavelength light source without compromising the selectivity. A minimal kinetic model for the process allows simulation of the reaction and provides insights for optimization of these processes in the laboratory.
AB - The Ni/Ir-photocatalyzed coupling of an aryl bromide (ArBr) with an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr], [Ni], [Ir]) are found to control the rate of ArBr consumption, but not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to show that the complex undergoes Ir-photocatalyzed conversion to products (Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr. A range of competing absorption and quenching effects lead to complex correlations between the Ir and Ni catalyst loadings and the reaction rate. Differences in the Ir/Ni Beer–Lambert absorption profiles allow the rate to be increased by the use of a shorter-wavelength light source without compromising the selectivity. A minimal kinetic model for the process allows simulation of the reaction and provides insights for optimization of these processes in the laboratory.
U2 - 10.1021/jacs.2c06831
DO - 10.1021/jacs.2c06831
M3 - Article
SN - 0002-7863
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
ER -