TY - JOUR
T1 - Kisspeptin and the hypothalamic control of reproduction
T2 - lessons from the human
AU - George, Jyothis T
AU - Seminara, Stephanie B
PY - 2012
Y1 - 2012
N2 - The hypothalamic hormone GnRH is a central driver of pituitary gonadotropin secretion, controlling pulsatile gonadotropin secretion, modulating gonadal steroid feedback, and bringing about full fertility in the adult. Thus, understanding GnRH neuronal regulation is essential to understanding the neurohumoral control of human reproduction. Genetic tools were used in patients with GnRH deficiency (i.e. idiopathic hypogonadotropic hypogonadism), a clinical syndrome that results from the failure of a normal pattern of pulsatile GnRH, to discover upstream modulators of GnRH secretion (1). In 2003, homozygosity mapping of two consanguineous pedigrees led to the identification of loss of function mutations in KISS1R (a G protein coupled receptor) by two groups (2, 3). In parallel, the Kiss1r(-/-) mouse was shown to be a phenocopy of the human GnRH-deficient state, demonstrating that the function of KISS1R/Kiss1r is conserved across mammalian species (4). Just before these human genetic discoveries, the ligand for kisspeptin-1 receptor [KISS1R; also known as G protein coupled receptor 54 (GPR54)], was discovered to be kisspeptin. Soon thereafter a large array of experimental studies began assembling genetic, expression, physiologic, transgenic, knockdown, and electrophysiological data to characterize the physiology of kisspeptin and its seminal role in modulating GnRH release.
AB - The hypothalamic hormone GnRH is a central driver of pituitary gonadotropin secretion, controlling pulsatile gonadotropin secretion, modulating gonadal steroid feedback, and bringing about full fertility in the adult. Thus, understanding GnRH neuronal regulation is essential to understanding the neurohumoral control of human reproduction. Genetic tools were used in patients with GnRH deficiency (i.e. idiopathic hypogonadotropic hypogonadism), a clinical syndrome that results from the failure of a normal pattern of pulsatile GnRH, to discover upstream modulators of GnRH secretion (1). In 2003, homozygosity mapping of two consanguineous pedigrees led to the identification of loss of function mutations in KISS1R (a G protein coupled receptor) by two groups (2, 3). In parallel, the Kiss1r(-/-) mouse was shown to be a phenocopy of the human GnRH-deficient state, demonstrating that the function of KISS1R/Kiss1r is conserved across mammalian species (4). Just before these human genetic discoveries, the ligand for kisspeptin-1 receptor [KISS1R; also known as G protein coupled receptor 54 (GPR54)], was discovered to be kisspeptin. Soon thereafter a large array of experimental studies began assembling genetic, expression, physiologic, transgenic, knockdown, and electrophysiological data to characterize the physiology of kisspeptin and its seminal role in modulating GnRH release.
U2 - 10.1210/en.2012-1429
DO - 10.1210/en.2012-1429
M3 - Article
C2 - 23015291
SN - 1945-7170
VL - 153
SP - 5130
EP - 5136
JO - Endocrinology
JF - Endocrinology
IS - 11
ER -