KOunt – A reproducible KEGG orthologue abundance workflow

Jennifer Mattock*, Marina Martínez-Álvaro, Matthew A. Cleveland, Rainer Roehe, Mick Watson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

SUMMARY: Accurate gene prediction is essential for successful metagenome analysis. We present KOunt, a Snakemake pipeline, that precisely quantifies KEGG orthologue abundance.

AVAILABILITY AND IMPLEMENTATION: KOunt is available on GitHub: https://github.com/WatsonLab/KOunt. The KOunt reference database is available on figshare: https://doi.org/10.6084/m9.figshare.21269715. Test data are available at https://doi.org/10.6084/m9.figshare.22250152 and version 1.2.0 of KOunt at https://doi.org/10.6084/m9.figshare.23607834.

Original languageEnglish
Article numberbtad483
Pages (from-to)1-3
Number of pages3
JournalBioinformatics
Volume39
Issue number8
Early online date8 Aug 2023
DOIs
Publication statusE-pub ahead of print - 8 Aug 2023

Keywords / Materials (for Non-textual outputs)

  • Databases, Factual
  • Metagenome
  • Software
  • Workflow

Fingerprint

Dive into the research topics of 'KOunt – A reproducible KEGG orthologue abundance workflow'. Together they form a unique fingerprint.

Cite this