Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity

Alex A Makarov, Juan Zou, Douglas R Houston, Christos Spanos, Alexandra S Solovyova, Cristina Cardenal-Peralta, Juri Rappsilber, Eric C Schirmer

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Lamin A is a nuclear intermediate filament protein critical for nuclear architecture and mechanics and mutated in a wide range of human diseases. Yet little is known about the molecular architecture of lamins and mechanisms of their assembly. Here we use SILAC cross-linking mass spectrometry to determine interactions within lamin dimers and between dimers in higher-order polymers. We find evidence for a compression mechanism where coiled coils in the lamin A rod can slide onto each other to contract rod length, likely driven by a wide range of electrostatic interactions with the flexible linkers between coiled coils. Similar interactions occur with unstructured regions flanking the rod domain during oligomeric assembly. Mutations linked to human disease block these interactions, suggesting that this spring-like contraction can explain in part the dynamic mechanical stretch and flexibility properties of the lamin polymer and other intermediate filament networks.

Original languageEnglish
Article number3056
Number of pages17
JournalNature Communications
Issue number1
Publication statusPublished - 11 Jul 2019

Keywords / Materials (for Non-textual outputs)

  • cytoskeletal proteins
  • electron microscopy
  • mass spectrometry
  • molecular modelling
  • nucleoskeleton


Dive into the research topics of 'Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity'. Together they form a unique fingerprint.

Cite this