Abstract / Description of output
We investigate the potential of a restricted Boltzmann Machine (RBM) for discriminative representation learning. By imposing the class information preservation constraints on the hidden layer of the RBM, we propose a Signed Laplacian Restricted Boltzmann Machine (SLRBM) for supervised discriminative representation learning. The model utilizes the label information and preserves the global data locality of data points simultaneously. Experimental results on the benchmark data set show the effectiveness of our method.
Original language | Undefined/Unknown |
---|---|
Publication status | Published - 28 Aug 2018 |
Event | iTWIST 2018 - Duration: 19 Nov 2018 → 23 Nov 2018 |
Conference
Conference | iTWIST 2018 |
---|---|
Period | 19/11/18 → 23/11/18 |
Keywords / Materials (for Non-textual outputs)
- cs.CV