Abstract / Description of output

Drivers’ population-level crash rates incrementally decrease following licensure, which has led to the implicit assumption that an individual driver’s crash risk also decreases incrementally after licensure as they accrue experience. However, in the aggregate data an incremental decrease in crash rate can reflect both incremental reductions in crash risk within individuals and an incremental increase in the proportion of drivers who have experienced an abrupt decrease in crash risk. Therefore, while it is true to say that the population of drivers’ crash risk reduces in the months following licensure, it is not necessarily true to say that a driver’s crash risk reduces in the months following licensure; that is, it cannot be assumed that individual-level changes in crash risk mirror the population-level changes in crash rates. In statistics, this is known as an ecological fallacy and in formal logic it is known as the fallacy of division, a type of category error. Using computational cognitive modeling methods we demonstrate that aggregating individual-level abrupt decreases in crash risk (i.e., non-incremental change trajectories) accurately fits population-level crash rate data from over 1 million novice drivers and uniquely accounts for effects of two interventions found to reduce police-reported MVCs. Thus, we demonstrate that: (1) a power-law artifact is readily observable in newly licensed drivers’ aggregate crash data, which is not necessarily indicative of individual-level change processes, (2) interventions can alter crash risk trajectories by inducing immediate phase changes in crash risk into a lower risk stratum, or increasing the probability of such a change, and (3) a phase transition model provides a stronger and more parsimonious account of the existing data than an incremental-accrual model.
Original languageEnglish
Pages (from-to)316-326
JournalTransportation Research Part F: Traffic Psychology and Behaviour
Early online date5 Feb 2019
Publication statusPublished - Apr 2019


Dive into the research topics of 'Learning to drive: A reconceptualization'. Together they form a unique fingerprint.

Cite this