TY - JOUR
T1 - Lessons from complex trait genetics may help us overcome the neuroimaging replication crisis
AU - Fürtjes, Anna Elisabeth
N1 - Acknowledgements: AEF is funded by the Social, Genetic and Developmental Psychiatry Centre, King’s College, London, and the National Institute of Health grant R01AG054628. Sincere thanks to Dr. Vincent Millischer, Lachlan Gilchrist, Professor James Cole, and two expert reviewers for their valuable feedback in writing this article.
PY - 2023/11
Y1 - 2023/11
N2 - The research fields of Complex Trait (or Statistical) Genetics and Neuroimaging face similar challenges in identifying reliable biological correlates of common traits and diseases. This Viewpoint focuses on five major lessons that allowed population-level genetics research to overcome many of its issues of replicability and may be directly applicable to inter-individual neuroimaging research. First, the failure of candidate gene studies inspires abandoning overly simplistic studies mapping individual brain regions onto traits and diseases. Second, developments in genetics research demonstrate that robust study results can be achieved by increasing sample sizes. Third and fourth, the success of genome-wide association studies motivates the use of mass-univariate testing and sharing summary-level association data to boost large-scale collaboration and meta-analysis. Finally, applying genetics methods dealing with complex data structures to vertex-wise (or voxel-wise) neuroimaging data promises more robust discoveries without the need to develop novel neuroimaging-specific methods. Those practices – that are firmly established in genetics research – should either be further endorsed, or newly adopted by the neuroimaging community, promising to accelerate the evolution of Neuroimaging through robust discovery.
AB - The research fields of Complex Trait (or Statistical) Genetics and Neuroimaging face similar challenges in identifying reliable biological correlates of common traits and diseases. This Viewpoint focuses on five major lessons that allowed population-level genetics research to overcome many of its issues of replicability and may be directly applicable to inter-individual neuroimaging research. First, the failure of candidate gene studies inspires abandoning overly simplistic studies mapping individual brain regions onto traits and diseases. Second, developments in genetics research demonstrate that robust study results can be achieved by increasing sample sizes. Third and fourth, the success of genome-wide association studies motivates the use of mass-univariate testing and sharing summary-level association data to boost large-scale collaboration and meta-analysis. Finally, applying genetics methods dealing with complex data structures to vertex-wise (or voxel-wise) neuroimaging data promises more robust discoveries without the need to develop novel neuroimaging-specific methods. Those practices – that are firmly established in genetics research – should either be further endorsed, or newly adopted by the neuroimaging community, promising to accelerate the evolution of Neuroimaging through robust discovery.
KW - parallels between research disciplines
KW - neuroimaging
KW - statistical genetics
KW - statistical methods
KW - data structures
KW - replicability
KW - interindividual inference
U2 - 10.1016/j.cortex.2023.08.003
DO - 10.1016/j.cortex.2023.08.003
M3 - Review article
SN - 0010-9452
VL - 168
SP - 76
EP - 81
JO - Cortex
JF - Cortex
ER -