Projects per year
Abstract / Description of output
The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method treats leaf counting as a direct regression problem and thus only requires as annotation the total leaf count per plant. We argue that combining different datasets when training a deep neural network is beneficial and improves the results of the proposed approach. We evaluate our method on the CVPPP 2017 Leaf Counting Challenge dataset, which contains images of Arabidopsis and tobacco plants. Experimental results show that the proposed method significantly outperforms the winner of the previous CVPPP challenge, improving the results by a minimum of ~50% on each of the test datasets, and can achieve this performance without knowing the experimental origin of the data (i.e. in the wild setting of the challenge). We also compare the counting accuracy of our model with that of per leaf segmentation algorithms, achieving a 20% decrease in mean absolute difference in count (|DiC|).
Original language | English |
---|---|
Title of host publication | International Conference on Computer Vision |
Subtitle of host publication | Computer Vision Problems in Plant Phenotyping (workshop) |
Publisher | Institute of Electrical and Electronics Engineers |
Number of pages | 8 |
DOIs | |
Publication status | E-pub ahead of print - 23 Jan 2018 |
Event | International Conference on Computer Vision: Computer Vision Problems in Plant Phenotyping Workshops - Venice, Italy Duration: 22 Oct 2017 → 29 Oct 2017 |
Conference
Conference | International Conference on Computer Vision |
---|---|
Country/Territory | Italy |
City | Venice |
Period | 22/10/17 → 29/10/17 |
Fingerprint
Dive into the research topics of 'Leveraging multiple datasets for deep leaf counting'. Together they form a unique fingerprint.Projects
- 2 Finished
-
An affordable stereoscopic camera array system for capturing real-time 3D responses to vegetation dense environments
1/10/16 → 31/03/18
Project: Research
-
PHIDIAS: PHIDIAS: Phenotyping with a High-throughput, Intelligent, Distributed, and Interactive Analysis System
1/09/11 → 31/08/15
Project: Project from a former institution