Projects per year
Abstract
Unmanned aerial vehicle (UAV) swarm communication is a powerful component of aerial relays; however, conventional radio frequency (RF)-based UAV swarm networks struggle to ensure timely and reliable communication. To this end, a light spectrum-based wireless system, LiFi, is presented to supplement in this work thanks to its distinctive benefits. We present the analytical derivation of the average block error probability (ABEP) as Chebyshev approximation, lower and upper bounds. Then, the key performance metrics of reliability, throughput, and latency expressions are provided as a function of the ABEP. The results show that the severe requirements of ultra-reliable (99.99%) and low-latency (sub-millisecond) communication (URLLC) are satisfied at even low signal-to-noise ratio (SNR) values. Additionally, in the numerical results, the impact of the blocklength, packet size, different distances among UAVs, SNR value, and light-emitting diode (LED) semi-angle are explored.
Original language | English |
---|---|
Pages (from-to) | 1471-1480 |
Number of pages | 9 |
Journal | Applied optics |
Volume | 63 |
Issue number | 6 |
Early online date | 12 Feb 2024 |
DOIs | |
Publication status | Published - 20 Feb 2024 |
Fingerprint
Dive into the research topics of 'LiFi-enabled UAV swarm networks'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ENLIGHTEM: European Training Network in Low-energy Visible Light IoT Systems
Haas, H. (Principal Investigator) & Popoola, W. (Co-investigator)
1/06/19 → 31/05/23
Project: Research