TY - JOUR
T1 - Limitation of Trypanosoma brucei parasitaemia results from density-dependent parasite differentiation and parasite killing by the host immune response
AU - Tyler, K M
AU - Higgs, P G
AU - Matthews, K R
AU - Gull, K
PY - 2001
Y1 - 2001
N2 - In the bloodstream of its mammalian host, the "slender" form of Trypanosoma brucei replicates extracellularly, producing a parasitaemia. At high density, the level of parasitaemia is limited at a sublethal level by differentiation to the non-replicative "stumpy" form and by the host immune response. Here, we derive continuous time equations to model the time-course, cell types and level of trypanosome parasitaemia, and compare the best fits with experimental data. The best fits that were obtained favour a model in which both density-dependent trypanosome differentiation and host immune response have a role in limiting the increase of parasites, much poorer fits being obtained when differentiation and immune response are considered independently of one another. Best fits also favour a model in which the slender-to-stumpy differentiation progresses in a manner that is essentially independent of the cell cycle. Finally, these models also make the prediction that the density-dependent trypanosome differentiation mechanism can give rise to oscillations in parasitaemia level. These oscillations are independent of the immune system and are not due to antigenic variation.
AB - In the bloodstream of its mammalian host, the "slender" form of Trypanosoma brucei replicates extracellularly, producing a parasitaemia. At high density, the level of parasitaemia is limited at a sublethal level by differentiation to the non-replicative "stumpy" form and by the host immune response. Here, we derive continuous time equations to model the time-course, cell types and level of trypanosome parasitaemia, and compare the best fits with experimental data. The best fits that were obtained favour a model in which both density-dependent trypanosome differentiation and host immune response have a role in limiting the increase of parasites, much poorer fits being obtained when differentiation and immune response are considered independently of one another. Best fits also favour a model in which the slender-to-stumpy differentiation progresses in a manner that is essentially independent of the cell cycle. Finally, these models also make the prediction that the density-dependent trypanosome differentiation mechanism can give rise to oscillations in parasitaemia level. These oscillations are independent of the immune system and are not due to antigenic variation.
U2 - 10.1098/rspb.2001.1794
DO - 10.1098/rspb.2001.1794
M3 - Article
C2 - 11674871
SN - 0962-8452
VL - 268
SP - 2235
EP - 2243
JO - Proceedings of the Royal Society B-Biological Sciences
JF - Proceedings of the Royal Society B-Biological Sciences
IS - 1482
ER -