Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of Salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells

M H Kogut, H Q He, P Kaiser

Research output: Contribution to journalArticlepeer-review

Abstract

Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern (PAMP) found in the cell wall of gram-negative bacteria and, in mammals, is recognized by the Toll-like receptor 4 (TLR4) in conjunction with the serum protein, lipopolysaccharide binding protein (LBP), and the CD14 co-receptor. We have found that chicken heterophils constitutively express multiple TLRs including TLR4. Interestingly, ultrapure LPS from Salmonella minnesota directly induced the functional activation of heterophils without the presence of LBP. However, the role of LBP and CD14 in the recognition of LPS and the induction of innate immunity, including cell functional activation and the transcription of cytokine and chemokine genes in chicken heterophils, is not known. As previously seen, in the absence of chicken serum, heterophil exposure to ultrapure LPS from Salmonella minnesota stimulated an increased degranulation response. However, the presence of 5% chicken serum, presumed to be a source of LBP, increased heterophil degranulation by 84%. In addition, the presence of either soluble recombinant human LBP (rhLBP, 68%) or CD14 (39%) also induced the up-regulation of the heterophil degranulation response. Incubation of heterophils with either chicken serum or rhLBP also significantly induced the up-regulation of pro-inflammatory cytokine (IL-1 beta, IL-6, and IL-18) and chemokine (CCLi4, CXCLi1, CXCLi2, and the CXC receptor 1) mRNA expression. Moreover, polyclonal antibodies directed against rat CD14 and human TLR4, but not antibodies against human TLR2, blocked LPS-mediated degranulation and up-regulation of the pro-inflammatory cytokine and chemokine mRNA expression. These data clearly demonstrate that LBP and CD14/TLR4 engagement is directly involved in LPS-mediated functional activation and innate immune gene expression in chicken heterophils.

Original languageEnglish
Pages (from-to)165-181
Number of pages17
JournalAnimal Biotechnology
Volume16
Issue number2
DOIs
Publication statusPublished - 2005

Fingerprint

Dive into the research topics of 'Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of Salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells'. Together they form a unique fingerprint.

Cite this