TY - JOUR
T1 - Liquid-Water Interactions with Gas-Diffusion-Layer Surfaces
AU - Santamaria, Anthony D.
AU - Das, Prodip
AU - MacDonald, James C.
AU - Weber, Adam Z.
PY - 2014/8/21
Y1 - 2014/8/21
N2 - Understanding dynamic liquid-water uptake and removal in gas-diffusion layers (GDLs) is essential to improve the performance of polymer-electrolyte fuel cells and related electrochemical technologies. In this work, GDL properties such as breakthrough pressure, droplet adhesion force, and detachment velocity are measured experimentally for commonly used GDLs under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection area and rate were studied to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials. The results conclude that liquid water moving transversely through or forming at the surface of GDL may be affected by internal capillary structure. Adhesion-force measurements using a bottom-injection method were found to be sensitive to PTFE loading, GDL thickness, and injection area/rate, the latter of which is critical for defining the control-volume limits for modeling and analysis. It was observed that higher PTFE loadings, increased thickness, and smaller injection areas led to elevated breakthrough pressure; meaning there was a greater resistance to forming droplets. The data are used to predict the onset of droplet instability via a simple force-balance model with general trend agreement.
AB - Understanding dynamic liquid-water uptake and removal in gas-diffusion layers (GDLs) is essential to improve the performance of polymer-electrolyte fuel cells and related electrochemical technologies. In this work, GDL properties such as breakthrough pressure, droplet adhesion force, and detachment velocity are measured experimentally for commonly used GDLs under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection area and rate were studied to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials. The results conclude that liquid water moving transversely through or forming at the surface of GDL may be affected by internal capillary structure. Adhesion-force measurements using a bottom-injection method were found to be sensitive to PTFE loading, GDL thickness, and injection area/rate, the latter of which is critical for defining the control-volume limits for modeling and analysis. It was observed that higher PTFE loadings, increased thickness, and smaller injection areas led to elevated breakthrough pressure; meaning there was a greater resistance to forming droplets. The data are used to predict the onset of droplet instability via a simple force-balance model with general trend agreement.
UR - https://publons.com/wos-op/publon/856474/
U2 - 10.1149/2.0321412JES
DO - 10.1149/2.0321412JES
M3 - Article
SN - 0013-4651
VL - 161
JO - Journal of the electrochemical society
JF - Journal of the electrochemical society
M1 - F1184
ER -