TY - JOUR
T1 - Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies
AU - Rezaie, Mehdi
AU - Ross, Ashley J.
AU - Seo, Hee Jong
AU - Kong, Hui
AU - Porredon, Anna
AU - Samushia, Lado
AU - Chaussidon, Edmond
AU - Krolewski, Alex
AU - de Mattia, Arnaud
AU - Beutler, Florian
AU - Aguilar, Jessica Nicole
AU - Ahlen, Steven
AU - Alam, Shadab
AU - Avila, Santiago
AU - Bahr-Kalus, Benedict
AU - Bermejo-Climent, Jose
AU - Brooks, David
AU - Claybaugh, Todd
AU - Cole, Shaun
AU - Dawson, Kyle
AU - de la Macorra, Axel
AU - Doel, Peter
AU - Font-Ribera, Andreu
AU - Forero-Romero, Jaime E.
AU - Gontcho, Satya Gontcho A.
AU - Guy, Julien
AU - Honscheid, Klaus
AU - Huterer, Dragan
AU - Kisner, Theodore
AU - Landriau, Martin
AU - Levi, Michael
AU - Manera, Marc
AU - Meisner, Aaron
AU - Miquel, Ramon
AU - Mueller, Eva Maria
AU - Myers, Adam
AU - Newman, Jeffrey A.
AU - Nie, Jundan
AU - Palanque-Delabrouille, Nathalie
AU - Percival, Will
AU - Poppett, Claire
AU - Rossi, Graziano
AU - Sanchez, Eusebio
AU - Schubnell, Michael
AU - Tarlé, Gregory
AU - Weaver, Benjamin Alan
AU - Yèche, Christophe
AU - Zhou, Zhimin
AU - Zou, Hu
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2024/8/1
Y1 - 2024/8/1
N2 - We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter fNL. Our sample comprises over 12 million targets, covering 14 000 deg2 of the sky, with redshifts in the range 0.2 < z < 1.35. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without fNL and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find fNL = 34+−44(24(−+73)50) at 68 per cent (95 per cent) confidence. We apply a series of robustness tests (e.g. cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power spectrum and degrades the fNL constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid overcorrection, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of fNL with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the fNL uncertainty.
AB - We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter fNL. Our sample comprises over 12 million targets, covering 14 000 deg2 of the sky, with redshifts in the range 0.2 < z < 1.35. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without fNL and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find fNL = 34+−44(24(−+73)50) at 68 per cent (95 per cent) confidence. We apply a series of robustness tests (e.g. cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power spectrum and degrades the fNL constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid overcorrection, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of fNL with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the fNL uncertainty.
KW - inflation
KW - large-scale structure of Universe
UR - http://www.scopus.com/inward/record.url?scp=85198702799&partnerID=8YFLogxK
U2 - 10.1093/mnras/stae886
DO - 10.1093/mnras/stae886
M3 - Article
AN - SCOPUS:85198702799
SN - 0035-8711
VL - 532
SP - 1902
EP - 1928
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -