Abstract / Description of output
A hydrogel of hydrophobic dipeptides can be used to create a wet foam with long-term stability. The dipeptide molecules self-assemble into fiber-like networks (due to the presence of metal ions) both at air-water interfaces and in the continuous phase. The former creates an interfacial film stabilizing the air bubbles while the latter forms a bulk gel, which prevents bubble movement and retards growth. If the storage modulus (G’) of the bulk hydrogel is sufficiently
high it can stop the coarsening of the air bubbles and thus dramatically improve the stability of the foam. Cryogenic scanning electron microscopy (cryo-SEM) and Raman spectra reveals the width of the fibers (200 nm) and that they are held together by hydrogen bonds. In the absence of bubbles, phase separation is observed between a hydrogel and a water-rich phase; in the foam
this can be suppressed provided that the concentration of dipeptides and metal ions are sufficiently high. We speculate that the resistance of the bubble arrangement to compaction and hence further drainage arrests the process of phase separation. This foam system has the advantages of long stability, low cost, as well as easy preparation; therefore, it has potential applications in food manufacturing, drug delivery and personal care industries.
high it can stop the coarsening of the air bubbles and thus dramatically improve the stability of the foam. Cryogenic scanning electron microscopy (cryo-SEM) and Raman spectra reveals the width of the fibers (200 nm) and that they are held together by hydrogen bonds. In the absence of bubbles, phase separation is observed between a hydrogel and a water-rich phase; in the foam
this can be suppressed provided that the concentration of dipeptides and metal ions are sufficiently high. We speculate that the resistance of the bubble arrangement to compaction and hence further drainage arrests the process of phase separation. This foam system has the advantages of long stability, low cost, as well as easy preparation; therefore, it has potential applications in food manufacturing, drug delivery and personal care industries.
Original language | English |
---|---|
Number of pages | 8 |
Journal | Advanced Materials Interfaces |
Volume | 3 |
Issue number | 3 |
Early online date | 30 Nov 2015 |
DOIs | |
Publication status | Published - 5 Feb 2016 |
Keywords / Materials (for Non-textual outputs)
- dipeptide fibers
- hydrogels
- self-assembly
- supramolecular materials
Fingerprint
Dive into the research topics of 'Long-Lived Foams Stabilized by a Hydrophobic Dipeptide Hydrogel'. Together they form a unique fingerprint.Profiles
-
Alex Lips
- School of Physics and Astronomy - Chair of Formulation Science
Person: Academic: Research Active