Projects per year
Abstract
Introduction
Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear.
Methods
We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from aging with dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries.
Results
Of 111 relevant studies, most assessed Alzheimer's disease versus healthy controls, using AD Neuroimaging Initiative data, support vector machines, and only T1-weighted sequences. Accuracy was highest for differentiating Alzheimer's disease from healthy controls and poor for differentiating healthy controls versus mild cognitive impairment versus Alzheimer's disease or mild cognitive impairment converters versus nonconverters. Accuracy increased using combined data types, but not by data source, sample size, or machine learning method.
Discussion
Machine learning does not differentiate clinically relevant disease categories yet. More diverse data sets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field.
Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear.
Methods
We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy aging from aging with dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries.
Results
Of 111 relevant studies, most assessed Alzheimer's disease versus healthy controls, using AD Neuroimaging Initiative data, support vector machines, and only T1-weighted sequences. Accuracy was highest for differentiating Alzheimer's disease from healthy controls and poor for differentiating healthy controls versus mild cognitive impairment versus Alzheimer's disease or mild cognitive impairment converters versus nonconverters. Accuracy increased using combined data types, but not by data source, sample size, or machine learning method.
Discussion
Machine learning does not differentiate clinically relevant disease categories yet. More diverse data sets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field.
Original language | English |
---|---|
Journal | Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring |
Early online date | 11 Aug 2018 |
DOIs | |
Publication status | E-pub ahead of print - 11 Aug 2018 |
Fingerprint
Dive into the research topics of 'Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Brain imaging and cognitive ageing in the Lothian Birth Cohort 1936: III
Wardlaw, J., Bastin, M. & Deary, I.
1/05/15 → 30/04/19
Project: Research
-