Abstract / Description of output
AIMS/HYPOTHESIS: Minimal evidence supports the efficacy of flash monitoring in lowering HbA1c. We sought to assess the impact of introducing flash monitoring in our centre.
METHODS: We undertook a prospective observational study to assess change in HbA1c in 900 individuals with type 1 diabetes following flash monitoring (comparator group of 518 with no flash monitoring). Secondary outcomes included changes in hypoglycaemia, quality of life, flash monitoring data and hospital admissions.
RESULTS: Those with baseline HbA1c ≥58 mmol/mol (7.5%) achieved a median −7 mmol/mol (interquartile range [IQR] −13 to −1) (0.6% [−1.2 to −0.1]%) change in HbA1c (p < 0.001). The percentage achieving HbA1c <58 mmol/mol rose from 34.2% to 50.9% (p < 0.001). Median follow-up was 245 days (IQR 182 to 330). Individuals not using flash monitoring experienced no change in HbA1c across a similar timescale (p = 0.508). Higher HbA1c (p < 0.001), younger age at diagnosis (p = 0.003) and lower social deprivation (p = 0.024) were independently associated with an HbA1c fall of ≥5 mmol/mol (0.5%). More symptomatic (OR 1.9, p < 0.001) and asymptomatic (OR 1.4, p < 0.001) hypoglycaemia was reported after flash monitoring. Following flash monitoring, regimen-related and emotional components of the diabetes distress scale improved although the proportion with elevated anxiety (OR 1.2, p = 0.028) and depression (OR 2.0, p < 0.001) scores increased. Blood glucose test strip use fell from 3.8 to 0.6 per day (p < 0.001). Diabetic ketoacidosis admissions fell significantly following flash monitoring (p = 0.043).
CONCLUSIONS/INTERPRETATION: Flash monitoring is associated with significant improvements in HbA1c and fewer diabetic ketoacidosis admissions. Higher rates of hypoglycaemia may relate to greater recognition of hitherto unrecognised events. Impact upon quality of life parameters was mixed but overall treatment satisfaction was overwhelmingly positive.
METHODS: We undertook a prospective observational study to assess change in HbA1c in 900 individuals with type 1 diabetes following flash monitoring (comparator group of 518 with no flash monitoring). Secondary outcomes included changes in hypoglycaemia, quality of life, flash monitoring data and hospital admissions.
RESULTS: Those with baseline HbA1c ≥58 mmol/mol (7.5%) achieved a median −7 mmol/mol (interquartile range [IQR] −13 to −1) (0.6% [−1.2 to −0.1]%) change in HbA1c (p < 0.001). The percentage achieving HbA1c <58 mmol/mol rose from 34.2% to 50.9% (p < 0.001). Median follow-up was 245 days (IQR 182 to 330). Individuals not using flash monitoring experienced no change in HbA1c across a similar timescale (p = 0.508). Higher HbA1c (p < 0.001), younger age at diagnosis (p = 0.003) and lower social deprivation (p = 0.024) were independently associated with an HbA1c fall of ≥5 mmol/mol (0.5%). More symptomatic (OR 1.9, p < 0.001) and asymptomatic (OR 1.4, p < 0.001) hypoglycaemia was reported after flash monitoring. Following flash monitoring, regimen-related and emotional components of the diabetes distress scale improved although the proportion with elevated anxiety (OR 1.2, p = 0.028) and depression (OR 2.0, p < 0.001) scores increased. Blood glucose test strip use fell from 3.8 to 0.6 per day (p < 0.001). Diabetic ketoacidosis admissions fell significantly following flash monitoring (p = 0.043).
CONCLUSIONS/INTERPRETATION: Flash monitoring is associated with significant improvements in HbA1c and fewer diabetic ketoacidosis admissions. Higher rates of hypoglycaemia may relate to greater recognition of hitherto unrecognised events. Impact upon quality of life parameters was mixed but overall treatment satisfaction was overwhelmingly positive.
Original language | English |
---|---|
Pages (from-to) | 1349–1356 |
Journal | Diabetologia |
Volume | 62 |
Issue number | 8 |
Early online date | 9 Jun 2019 |
DOIs | |
Publication status | Published - Aug 2019 |
Fingerprint
Dive into the research topics of 'Marked improvement in HbA1c following commencement of flash glucose monitoring in people with type 1 diabetes'. Together they form a unique fingerprint.Profiles
-
Roland Stimson
- Deanery of Clinical Sciences - Personal Chair of Endocrinology
- Centre for Cardiovascular Science
- Edinburgh Imaging
Person: Academic: Research Active