Measurement of quarkonium production in proton–lead and proton–proton collisions at $5.02~\mathrm {TeV}$ with the ATLAS detector

Philip James Clark, Sinead Farrington, Michele Faucci Giannelli, Yanyan Gao, Ahmed Hasib, Christos Leonidopoulos, Victoria Jane Martin, Liza Mijović, Corrinne Mills, Benjamin Wynne, Atlas Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.
Original languageEnglish
Article number171
JournalThe European Physical Journal C (EPJ C)
VolumeC78
Issue number3
DOIs
Publication statusPublished - 28 Feb 2018

Fingerprint

Dive into the research topics of 'Measurement of quarkonium production in proton–lead and proton–proton collisions at $5.02~\mathrm {TeV}$ with the ATLAS detector'. Together they form a unique fingerprint.

Cite this