Abstract
A measurement of the shape of the differential decay rate and the associated Isgur-Wise function for the decay $\Lambda_b^0\to\Lambda_c^+\mu^-\overline{\nu}$ is reported, using data corresponding to $3 fb^{-1}$ collected with the LHCb detector in proton-proton collisions. The $\Lambda_c^+\mu^-\overline{\nu}$(+ anything) final states are reconstructed through the detection of a muon and a $\Lambda_c^+$ baryon decaying into $pK^-\pi^+$, and the decays $\Lambda_b^0\to\Lambda_c^+\pi^+\pi^-\mu^-\overline{\nu}$ are used to determine contributions from $\Lambda_b^0\to \Lambda_c^{\star+}\mu ^-\bar{\nu}$ decays. The measured dependence of the differential decay rate upon the squared four-momentum transfer between the heavy baryons, $q^2$, is compared with expectations from heavy-quark effective theory and from unquenched lattice QCD predictions.
Original language | English |
---|---|
Article number | Aaij:2017svr |
Pages (from-to) | 112005 |
Journal | Physical Review |
Volume | D96 |
Issue number | 11 |
DOIs | |
Publication status | Published - 13 Dec 2017 |