Measuring the predictability of life outcomes with a scientific mass collaboration

Matthew J. Salganik, Ian Lundberg, Alexander T. Kindel, Caitlin E. Ahearn, Khaled Al-ghoneim, Abdullah Almaatouq, Drew M. Altschul, Jennie E. Brand, Nicole Bohme Carnegie, Ryan James Compton, Debanjan Datta, Thomas Davidson, Anna Filippova, Connor Gilroy, Brian J. Goode, Eaman Jahani, Ridhi Kashyap, Antje Kirchner, Stephen Mckay, Allison C. MorganAlex Pentland, Kivan Polimis, Louis Raes, Daniel E. Rigobon, Claudia V. Roberts, Diana M. Stanescu, Yoshihiko Suhara, Adaner Usmani, Erik H. Wang, Muna Adem, Abdulla Alhajri, Bedoor Alshebli, Redwane Amin, Ryan B. Amos, Lisa P. Argyle, Livia Baer-bositis, Moritz Büchi, Bo-ryehn Chung, William Eggert, Gregory Faletto, Zhilin Fan, Jeremy Freese, Tejomay Gadgil, Josh Gagné, Yue Gao, Andrew Halpern-manners, Sonia P. Hashim, Sonia Hausen, Guanhua He, Kimberly Higuera, Bernie Hogan, Ilana M. Horwitz, Lisa M. Hummel, Naman Jain, Kun Jin, David Jurgens, Patrick Kaminski, Areg Karapetyan, E. H. Kim, Ben Leizman, Naijia Liu, Malte Möser, Andrew E. Mack, Mayank Mahajan, Noah Mandell, Helge Marahrens, Diana Mercado-garcia, Viola Mocz, Katariina Mueller-gastell, Ahmed Musse, Qiankun Niu, William Nowak, Hamidreza Omidvar, Andrew Or, Karen Ouyang, Katy M. Pinto, Ethan Porter, Kristin E. Porter, Crystal Qian, Tamkinat Rauf, Anahit Sargsyan, Thomas Schaffner, Landon Schnabel, Bryan Schonfeld, Ben Sender, Jonathan D. Tang, Emma Tsurkov, Austin Van Loon, Onur Varol, Xiafei Wang, Zhi Wang, Julia Wang, Flora Wang, Samantha Weissman, Kirstie Whitaker, Maria K. Wolters, Wei Lee Woon, James Wu, Catherine Wu, Kengran Yang, Jingwen Yin, Bingyu Zhao, Chenyun Zhu, Jeanne Brooks-gunn, Barbara E. Engelhardt, Moritz Hardt, Dean Knox, Karen Levy, Arvind Narayanan, Brandon M. Stewart, Duncan J. Watts, Sara Mclanahan

Research output: Contribution to journalArticlepeer-review


Hundreds of researchers attempted to predict six life outcomes, such as a child’s grade point average and whether a family would be evicted from their home. These researchers used machine-learning methods optimized for prediction, and they drew on a vast dataset that was painstakingly collected by social scientists over 15 y. However, no one made very accurate predictions. For policymakers considering using predictive models in settings such as criminal justice and child-protective services, these results raise a number of concerns. Additionally, researchers must reconcile the idea that they understand life trajectories with the fact that none of the predictions were very accurate.
Original languageEnglish
Pages (from-to)8398-8403
JournalProceedings of the National Academy of Sciences
Issue number15
Early online date30 Mar 2020
Publication statusE-pub ahead of print - 30 Mar 2020


  • life course
  • prediction
  • machine learning
  • mass collaboration


Dive into the research topics of 'Measuring the predictability of life outcomes with a scientific mass collaboration'. Together they form a unique fingerprint.

Cite this