Membranes under shear stress: Visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device

Flurin Sturzenegger, Tom Robinson, David Hess, Petra S. Dittrich*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

In this study we investigate the effect of shear force on lipid membranes induced by external fluid flow. We use giant unilamellar vesicles (GUVs) as simple cell models and chose a ternary lipid mixture that exhibits liquid-ordered and liquid-disordered domains. These domains are stained with different dyes to allow visualization of changes within the membrane after the application of flow. A microfluidic device served as a valuable platform to immobilize the vesicles and apply shear forces of a defined strength. Moreover, integration of valves allowed us to stop the flow instantaneously and visualize the relaxing domain patterns by means of high-resolution fluorescence microscopy. We observed the formation of transient, non-deterministic patterns of the formerly round domains during application of flow. When the flow is stopped, round domains are formed again on a time scale of ms to s. At longer time scales of several seconds to minutes, the domains fuse into larger domains until they reach equilibrium. These processes are accelerated with increasing temperature and vesicles with budding domains do not fuse unless the temperature is elevated. Our results show the strong effect of the flow on the lipid membrane and we believe that this phenomenon plays a crucial role in the processes of mechanotransduction in living cells.

Original languageEnglish
Pages (from-to)5072-5076
Number of pages5
JournalSoft Matter
Volume12
Issue number23
Early online date11 May 2016
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Membranes under shear stress: Visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device'. Together they form a unique fingerprint.

Cite this