Metabolic syndrome without obesity: Hepatic overexpression of 11 beta-hydroxysteroid dehydrogenase type 1 in transgenic mice

J M Paterson, N M Morton, C Fievet, C J Kenyon, M C Holmes, B Staels, J R Seckl, J J Mullins

Research output: Contribution to journalArticlepeer-review


in obese humans and rodents there is increased expression of the key glucocorticoid (GC) regenerating enzyme, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), in adipose tissue. This increased expression appears to be of pathogenic importance because transgenic mice overexpressing 11beta-HSD1 selectively in adipose tissue exhibit a full metabolic syndrome with visceral obesity, dyslipidemia, insulin-resistant diabetes, and hypertension. In this model, while systemic plasma GC levels are unaltered, GC delivery to the liver via the portal vein is increased. 11beta-HSD1 is most highly expressed in liver where inhibition or deficiency of its activity improves glucose and lipid homeostasis. To determine the potential contribution of elevated intrahepatic GCs alone toward development of insulin-resistant syndromes we generated transgenic mice expressing increased 11beta-HSD1 activity selectively in the liver under transcriptional control of hepatic regulatory sequences derived from the human apoE gene (apoE-HSD1). Transgenic lines with 2- and 5-fold-elevated 11beta-HSD1 activity exhibited mild insulin resistance without altered fat depot mass. ApoE-HSD1 transgenic mice exhibited fatty liver and dyslipidemia with increased hepatic lipid synthesis/flux associated with elevated hepatic LXRalpha and PPARalpha mRNA levels as well as impaired hepatic lipid clearance. Further, apoE-HSD1 transgenic mice have a marked, transgene-dose-associated hypertension paralleled by incrementally increased liver angiotensinogen expression. These data suggest that elevated hepatic expression of 11beta-HSD1 may relate to the pathogenesis of specific fatty liver, insulin-resistant, and hypertensive syndromes without obesity in humans as may occur in, for example, myotonic dystrophy, and possibly, the metabolically obese, normal-weight individual.

Original languageEnglish
Pages (from-to)7088-7093
Number of pages6
JournalProceedings of the National Academy of Sciences
Issue number18
Publication statusPublished - 4 May 2004

Cite this