Abstract / Description of output
Determining the best set of optimizations to apply to a program has been a long standing problem for compiler writers. To reduce the complexity of this task, existing approaches typically apply the same set of optimizations to all procedures within a program, without regard to their particular structure. This paper develops a new method-specific approach that automatically selects the best optimizations on a per method basis within a dynamic compiler. Our approach uses the machine learning technique of logistic regression to automatically derive a predictive model that determines which optimizations to apply based on the features of a method. This technique is implemented in the Jikes RVM Java JIT compiler. Using this approach we reduce the average total execution time of the SPECjvm98 benchmarks by 29%. When the same heuristic is applied to the DaCapo+ benchmark suite, we obtain an average 33% reduction over the default level O2 setting.
Original language | English |
---|---|
Title of host publication | Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA |
Publisher | ACM |
Pages | 229-240 |
Number of pages | 12 |
Volume | 41 |
Edition | 10 |
ISBN (Print) | 1-59593-348-4 |
DOIs | |
Publication status | Published - 2006 |