MicroRNA related polymorphisms and breast cancer risk

Sofia Khan, Dario Greco, Kyriaki Michailidou, Roger L Milne, Taru A Muranen, Tuomas Heikkinen, Kirsimari Aaltonen, Joe Dennis, Manjeet K Bolla, Jianjun Liu, Per Hall, Astrid Irwanto, Keith Humphreys, Jingmei Li, Kamila Czene, Jenny Chang-Claude, Rebecca Hein, Anja Rudolph, Petra Seibold, Dieter Flesch-JanysOlivia Fletcher, Julian Peto, Isabel dos Santos Silva, Nichola Johnson, Lorna Gibson, Zoe Aitken, John L Hopper, Helen Tsimiklis, Minh Bui, Enes Makalic, Daniel F Schmidt, Melissa C Southey, Carmel Apicella, Jennifer Stone, Quinten Waisfisz, Hanne Meijers-Heijboer, Muriel A Adank, Rob B van der Luijt, Alfons Meindl, Rita K Schmutzler, Bertram Müller-Myhsok, Peter Lichtner, Clare Turnbull, Nazneen Rahman, Stephen J Chanock, David J Hunter, Angela Cox, Simon S Cross, Malcolm W R Reed, Jonine Figueroa, kConFab Investigators, Ian Tomlinson

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

Original languageEnglish
Pages (from-to)e109973
JournalPLoS ONE
Volume9
Issue number11
DOIs
Publication statusPublished - 2014

Keywords / Materials (for Non-textual outputs)

  • 3' Untranslated Regions
  • Binding Sites
  • Breast Neoplasms
  • Case-Control Studies
  • Chromosome Mapping
  • Computational Biology
  • Female
  • Genome-Wide Association Study
  • Genotype
  • Humans
  • MicroRNAs
  • Polymorphism, Single Nucleotide
  • Receptors, Estrogen

Fingerprint

Dive into the research topics of 'MicroRNA related polymorphisms and breast cancer risk'. Together they form a unique fingerprint.

Cite this