TY - JOUR
T1 - Modelling radiation damage to pixel sensors in the ATLAS detector
AU - Clark, Philip James
AU - Farrington, Sinead
AU - Faucci Giannelli, Michele
AU - Gao, Yanyan
AU - Hasib, Ahmed
AU - Leonidopoulos, Christos
AU - Martin, Victoria Jane
AU - Mijovic, Liza
AU - Wynne, Benjamin
AU - Collaboration, Atlas
PY - 2019/6/11
Y1 - 2019/6/11
N2 - Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of $10^{15}$ 1 MeV ${n}_{eq}/{cm}^2$, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 ($\leq 10^{15}$ 1 MeV ${n}_{eq}/{cm}^2$).
AB - Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of $10^{15}$ 1 MeV ${n}_{eq}/{cm}^2$, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 ($\leq 10^{15}$ 1 MeV ${n}_{eq}/{cm}^2$).
U2 - 10.1088/1748-0221/14/06/P06012
DO - 10.1088/1748-0221/14/06/P06012
M3 - Article
VL - 14
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 06
M1 - P06012
ER -