Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

Research output: Contribution to journalArticlepeer-review

Abstract

Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/inhibition causes hypertension, whereas deficiency/inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis.
Original languageEnglish
Article number320
Pages (from-to)320
Number of pages10
JournalCurrent atherosclerosis reports
Volume15
Issue number5
DOIs
Publication statusPublished - May 2013

Fingerprint

Dive into the research topics of 'Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation'. Together they form a unique fingerprint.

Cite this