Abstract / Description of output
Hypoxic inhibition of K+ channels in type I cells is believed to be of central importance in carotid body chernotransduction. We have recently suggested that hypoxic channel inhibition is mediated by AMP-activated protein kinase (AMPK). Here, we have further explored the modulation by AMPK of recombinant K+ channels (expressed in HEK293 cells) whose native counterparts are considered O-2-sensitive in the rat carotid body. Inhibition of maxiK channels by AMPK activation with AICAR was found to be independent of [Ca2+](i) and occurred regardless of whether the alpha subunit was co-expressed with an auxiliary beta subunit. All effects of AICAR were fully reversed by the AMPK inhibitor compound C. MaxiK channels were also inhibited by the novel AMPK activator A-769662 and by intracellular dialysis with the constitutively active, truncated AMPK mutant, T172D. The molecular identity of the O-2-sensitive leak K+ conductance in rat type I cells remains unclear, but shares similarities with TASK-1 and TASK-3. Recombinant TASK-I was insensitive to AICAR. However, TASK-3 was inhibited by either AICAR or A-769662 in a manner which was reversed by compound C. These data highlight a role for AMPK in the modulation of two proposed O-2 sensitive K+ channels found in the carotid body.
Original language | English |
---|---|
Title of host publication | ARTERIAL CHEMORECEPTORS |
Editors | C Gonzalez, CA Nurse, C Peers |
Place of Publication | BERLIN |
Publisher | Springer |
Pages | 57-63 |
Number of pages | 7 |
ISBN (Print) | 978-90-481-2258-5 |
DOIs | |
Publication status | Published - 2009 |
Event | 17th Meeting of the International-Society-for-Arterial-Chemoreception (ISAC) - Valladolid Duration: 1 Jul 2008 → 5 Jul 2008 |
Conference
Conference | 17th Meeting of the International-Society-for-Arterial-Chemoreception (ISAC) |
---|---|
City | Valladolid |
Period | 1/07/08 → 5/07/08 |