Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1

Research output: Contribution to journalReview articlepeer-review

Abstract / Description of output

The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving therapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1’s luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1’s entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.
Original languageEnglish
Number of pages15
JournalFrontiers in Cell and Developmental Biology
Volume11
DOIs
Publication statusPublished - 21 Jun 2023

Keywords / Materials (for Non-textual outputs)

  • LINC complex
  • nuclear envelope
  • SUN1
  • KASH5
  • X-ray crystallography
  • molecular dynamics
  • biophysics

Fingerprint

Dive into the research topics of 'Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1'. Together they form a unique fingerprint.

Cite this