Molecular noise induces concentration oscillations in chemical systems with stable node steady states

D L K Toner, R Grima

Research output: Contribution to journalArticlepeer-review

Abstract

It is well known that internal or molecular noise induces concentration oscillations in chemical systems whose deterministic models exhibit damped oscillations. In this article we show, using the linear-noise approximation of the chemical master equation, that noise can also induce oscillations in systems whose deterministic descriptions admit no damped oscillations, i.e., systems with a stable node. This non-intuitive phenomenon is remarkable since, unlike noise-induced oscillations in systems with damped deterministic oscillations, it cannot be explained by noise excitation of the deterministic resonant frequency of the system. We here prove the following general properties of stable-node noise-induced oscillations for systems with two species: (i) the upper bound of their frequency is given by the geometric mean of the real eigenvalues of the Jacobian of the system, (ii) the upper bound of the Q-factor of the oscillations is inversely proportional to the distance between the real eigenvalues of the Jacobian, and (iii) these oscillations are not necessarily exhibited by all interacting chemical species in the system. The existence and properties of stable-node oscillations are verified by stochastic simulations of the Brusselator, a cascade Brusselator reaction system, and two other simple chemical systems involving auto-catalysis and trimerization. It is also shown how external noise induces stable node oscillations with different properties than those stimulated by internal noise.
Original languageEnglish
Article number055101
JournalThe Journal of Chemical Physics
Volume138
Issue number5
DOIs
Publication statusPublished - 4 Feb 2013

Fingerprint Dive into the research topics of 'Molecular noise induces concentration oscillations in chemical systems with stable node steady states'. Together they form a unique fingerprint.

Cite this