TY - BOOK

T1 - Monte Carlo optimization approach for decentralized estimation networks under communication constraints

AU - Uney, Murat

AU - Cetin, Mujdat

PY - 2010/12/13

Y1 - 2010/12/13

N2 - We consider designing decentralized estimation schemes over bandwidth limited communication links with a particular interest in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We take two classes of in–network processing strategies into account which yield graph representations through modeling the sensor platforms as the vertices and the communication links by edges as well as a tractable Bayesian risk that comprises the cost of transmissions and penalty for the estimation errors. This approach captures a broad range of possibilities for “online” processing of observations as well as the constraints imposed and enables a rigorous design setting in the form of a constrained optimization problem. Similar schemes as well as the structures exhibited by the solutions to the design problem has been studied previously in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization schemes involve integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both classes of in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedures operate in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk.

AB - We consider designing decentralized estimation schemes over bandwidth limited communication links with a particular interest in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We take two classes of in–network processing strategies into account which yield graph representations through modeling the sensor platforms as the vertices and the communication links by edges as well as a tractable Bayesian risk that comprises the cost of transmissions and penalty for the estimation errors. This approach captures a broad range of possibilities for “online” processing of observations as well as the constraints imposed and enables a rigorous design setting in the form of a constrained optimization problem. Similar schemes as well as the structures exhibited by the solutions to the design problem has been studied previously in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization schemes involve integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both classes of in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedures operate in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk.

M3 - Other report

BT - Monte Carlo optimization approach for decentralized estimation networks under communication constraints

PB - Sabanci University

ER -