Multi-path content delivery: Efficiency analysis and optimization algorithms

Jakob Chakareski

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The paper studies the benefits of multi-path content delivery from a rate-distortion efficiency perspective. We develop an optimization framework for computing transmission schedules for streaming media packets over multiple network paths that maximize the end-to-end video quality, for the given bandwidth resources. We comprehensively address the two prospective scenarios of content delivery with packet path diversity. In the context of sender-driven systems, our framework enables the sender to compute at every transmission instance the mapping of packets to network paths that meets a rate constraint while minimizing the end-to-end distortion. In receiver-driven multi-path streaming, our framework enables the client to dynamically decide which packets, if any, to request for transmission and from which media servers, such that the end-to-end distortion is minimized for a given transmission rate constraint. Via simulation experiments, we carefully examine the performance of the scheduling framework in both multi-path delivery scenarios. We demonstrate that the optimization framework closely approaches the performance of an ideal streaming system working at channel capacity with an infinite play-out delay. We also show that the optimization leads to substantial gains in rate-distortion performance over a conventional content-agnostic scheduler. Through the concept of error-cost performance for streaming a single packet, we provide another useful insight into the operation of the optimization framework and the conventional scheduling system.

Original languageEnglish
Pages (from-to)1189-1198
Number of pages10
JournalJournal of visual communication and image representation
Volume23
Issue number8
DOIs
Publication statusPublished - Nov 2012

Keywords / Materials (for Non-textual outputs)

  • Video streaming
  • Multi-path delivery
  • Rate-distortion optimization
  • Packet scheduling
  • Rate allocation
  • Server diversity
  • Joint source-channel coding
  • Markov decision processes
  • VIDEO COMMUNICATION
  • DIVERSITY
  • INTERNET
  • NETWORKS
  • MEDIA

Fingerprint

Dive into the research topics of 'Multi-path content delivery: Efficiency analysis and optimization algorithms'. Together they form a unique fingerprint.

Cite this