Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects

Amanda J. Drake, Lincoln Liu, David Kerrigan, Richard R. Meehan, Jonathan R. Seckl

Research output: Contribution to journalArticlepeer-review

Abstract

Exposure to an adverse early life environment is associated with increased cardio-metabolic disease risk, a phenomenon termed "programming." The effects of this are not limited to the exposed first (F1) generation but can be transmissible to a second generation (F2) through male and female lines. Using a three generation animal model of programming by initial prenatal glucocorticoid overexposure we have identified effects on fetal and placental weight in both the F1 and F2 offspring. However, the expression of candidate imprinted genes in the fetus and placenta differed between the F1 and F2, with marked parent-of-origin effects in F2. Since DNA methylation at imprinted genes is maintained at fertilization, they are potential templates for the transmission of programming effects across generations. Although we detected alterations in DNA methylation at differentially methylated regions (DMRs) of the key prenatal growth factor Igf2 in F1 and F2 fetal liver, the changes in DNA methylation at these DMRs do not appear to underlie the transmission of effects on Igf2 expression through sperm. Thus, multigenerational programming effects on birth weight and disease risk is associated with different processes in F1 and F2. These findings have implications for the pathogenesis and future attempts to stratify therapies for the "developmental component" of cardiometabolic disease.
Original languageEnglish
Pages (from-to)1334-1343
Number of pages10
JournalEpigenetics
Volume6
Issue number11
DOIs
Publication statusPublished - Nov 2011

Fingerprint

Dive into the research topics of 'Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects'. Together they form a unique fingerprint.

Cite this