Projects per year
Abstract
Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. In settings where unlabelled speech is the only available resource, such embeddings can be used in “zero-resource” speech search, indexing and discovery systems. Here we propose to train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zeroresource languages. For this transfer learning approach, we consider two multilingual recurrent neural network models: a discriminative classifier trained on the joint vocabularies of all training languages, and a correspondence autoencoder trained to reconstruct word pairs. We test these using a word discrimination task on six target zero-resource languages. When trained on seven well-resourced languages, both models perform similarly and outperform unsupervised models trained on the zero-resource languages. With just a single training language, the second model works better, but performance depends more on the particular training–testing language pair.
Original language | English |
---|---|
Title of host publication | ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 6414-6418 |
Number of pages | 5 |
ISBN (Electronic) | 978-1-5090-6631-5 |
ISBN (Print) | 978-1-5090-6632-2 |
DOIs | |
Publication status | Published - 14 May 2020 |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing - Barcelona, Spain Duration: 4 May 2020 → 8 May 2020 Conference number: 45 |
Publication series
Name | |
---|---|
Publisher | IEEE |
ISSN (Print) | 1520-6149 |
ISSN (Electronic) | 2379-190X |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Abbreviated title | ICASSP 2020 |
Country/Territory | Spain |
City | Barcelona |
Period | 4/05/20 → 8/05/20 |
Keywords
- Acoustic word embedding
- multilingual models
- Zero-resource speech processing
- query-by-example
Fingerprint
Dive into the research topics of 'Multilingual Acoustic Word Embedding Models for Processing Zero-Resource Languages'. Together they form a unique fingerprint.Projects
- 2 Finished