TY - GEN
T1 - Multiple-banked Register File Architectures
AU - Cruz, José-Lorenzo
AU - González, Antonio
AU - Valero, Mateo
AU - Topham, Nigel P.
PY - 2000
Y1 - 2000
N2 - The register file access time is one of the critical delays in current superscalar processors. Its impact on processor performance is likely to increase in future processor generations, as they are expected to increase the issue width (which implies more register ports) and the size of the instruction window (which implies more registers), and to use some kind of multithreading. Under this scenario, the register file access time could be a dominant delay and a pipelined implementation would be desirable to allow for high clock rates. However, a multi-stage register file has severe implications for processor performance (e.g. higher branch misprediction penalty) and complexity (more levels of bypass logic). To tackle these two problems, in this paper we propose a register file architecture composed of multiple banks. In particular we focus on a multi-level organization of the register file, which provides low latency and simple bypass logic. We propose several caching policies and prefetching strategies and demonstrate the potential of this multiple-banked organization. For instance, we show that a two-level organization degrades IPC by 10% and 2% with respect to a non-pipelined single-banked register file, for SpecInt95 and SpecFP95 respectively, but it increases performance by 87% and 92% when the register file access time is factored in.
AB - The register file access time is one of the critical delays in current superscalar processors. Its impact on processor performance is likely to increase in future processor generations, as they are expected to increase the issue width (which implies more register ports) and the size of the instruction window (which implies more registers), and to use some kind of multithreading. Under this scenario, the register file access time could be a dominant delay and a pipelined implementation would be desirable to allow for high clock rates. However, a multi-stage register file has severe implications for processor performance (e.g. higher branch misprediction penalty) and complexity (more levels of bypass logic). To tackle these two problems, in this paper we propose a register file architecture composed of multiple banks. In particular we focus on a multi-level organization of the register file, which provides low latency and simple bypass logic. We propose several caching policies and prefetching strategies and demonstrate the potential of this multiple-banked organization. For instance, we show that a two-level organization degrades IPC by 10% and 2% with respect to a non-pipelined single-banked register file, for SpecInt95 and SpecFP95 respectively, but it increases performance by 87% and 92% when the register file access time is factored in.
KW - bypass logic, dynamically-scheduled processor, register file architecture, register file cache
U2 - 10.1145/339647.339708
DO - 10.1145/339647.339708
M3 - Conference contribution
SN - 1-58113-232-8
T3 - ISCA '00
SP - 316
EP - 325
BT - Proceedings of the 27th Annual International Symposium on Computer Architecture
PB - ACM
CY - New York, NY, USA
ER -