Projects per year
Abstract
The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for prediction of complex traits as well as estimation of population genetic parameters. Improved inference and prediction accuracy of GBLUP may be achieved by identifying genomic regions enriched for causal genetic variants. We aimed at searching for patterns in GBLUP-derived single-marker statistics, by including them in genetic marker set tests, that could reveal associations between a genomic feature and a complex trait. GBLUP-derived set tests proved to be powerful for detecting genomic features, here defined by gene ontology terms, enriched for causal variants affecting a quantitative trait in a population with low degree of relatedness. Different set test approaches were compared using simulated data illustrating the impact of trait- and genomic feature-specific factors on detection power. We extended the most powerful single trait set test, covariance association test (CVAT), to a multiple trait setting. The multiple trait CVAT (MT-CVAT) identified functionally relevant gene ontology categories associated with the quantitative trait, chill coma recovery time, in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel.
Original language | English |
---|---|
Article number | 2413 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
Early online date | 25 May 2017 |
DOIs | |
Publication status | E-pub ahead of print - 25 May 2017 |
Fingerprint
Dive into the research topics of 'Multiple Trait Covariance Association Test Identifies Gene Ontology Categories Associated to Chill Coma Recovery Time in Drosophila melanogaster'. Together they form a unique fingerprint.Projects
- 1 Finished
-
FARSPhase: a Flexible, widely Applicable, Robust, and Scalable phasing algorithm for human genetics that combines long-range phasing and hidden markov models
Hickey, J. (Principal Investigator)
1/04/15 → 7/04/18
Project: Research