Multiscale SAXS-WAXD characterisation of the deformation mechanisms of electrospun PCL scaffolds

Francisco Javier Camarena-Maese, Francisca Martinez-Hergueta, Juan Pedro Fernandez-Blazquez, Rutger Kok, Jamie Reid, Anthony Callanan

Research output: Contribution to journalArticlepeer-review

Abstract

This research provides a thorough study of the mechanical response of PCL scaffolds and determines their deformation micromechanisms at different scales by a combination of experimental techniques (mechanical tests, scanning electron microscopy, wide angle X-ray diffraction and small-angle X-ray scattering). Scaffolds with different fibre orientation distribution functions were manufactured and subjected to tensile loading. Macromechanical properties were dictated by the fibre deformation and interaction in terms of fibre straightening, rotation and stretching. Stiffness and yield strength were directly proportional to the percentage of fibres oriented with the loading direction. Gradual deformation induced progressive fibre rotation, uncurling and stretching, showing different impact at molecular level for each configuration. Fibres aligned with the loading direction presented homogeneous plasticity with an inherent loss of crystal phase, meanwhile misaligned fibres exhibited negligible loss of crystallinity due to a predominance of fibre rotation. Fibre plasticity triggered the macromechanical yielding of the scaffold and for high levels of plastic deformation fibres developed macromolecular fibrils and microvoids. These findings provide the fundamental observations to develop engineering tissues with highly tunable and tailored mechanical properties for site specific in vivo applications.
Original languageEnglish
Article number122775
JournalPolymer
Volume203
Early online date8 Jul 2020
DOIs
Publication statusPublished - 26 Aug 2020

Keywords

  • PCL scaffold
  • SAXS-WAXD
  • Tensile response
  • synchrotron

Fingerprint

Dive into the research topics of 'Multiscale SAXS-WAXD characterisation of the deformation mechanisms of electrospun PCL scaffolds'. Together they form a unique fingerprint.

Cite this