TY - JOUR
T1 - Nanoscale control of polyoxometalate assembly
T2 - a {Mn8W4} cluster within a {W36Si4Mn10} cluster showing a new type of isomerism
AU - Winter, Ross S.
AU - Yan, Jun
AU - Busche, Christoph
AU - Mathieson, Jennifer S.
AU - Prescimone, Alessandro
AU - Brechin, Euan K.
AU - Long, De-Liang
AU - Cronin, Leroy
N1 - Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2013/2/25
Y1 - 2013/2/25
N2 - Two near isomeric clusters containing a novel {Mn(8)W(4)} Keggin cluster within a [W(36)Mn(10)Si(4)O(136)(OH)(4)(H(2)O)8](24-) cluster are reported: K(10)Li(14)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8)] (1) and K(10)Li1(3.5)Mn(0.25)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8) ] (1'). Bulk characterization of the clusters has been carried out by single crystal X-ray structure analysis, ICP-MS, TGA, ESI-MS, CV and SQUID-magnetometer analysis. X-ray analysis revealed that 1' has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two "intermediate" types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X-ray analysis and revealed to be novel clusters K(4)Li(22)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·56H(2)O (2) and Mn(2)K(8)Li(14)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·45H(2)O (3). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X-ray crystallography directly facilitated understanding the means by which a POM assembled.
AB - Two near isomeric clusters containing a novel {Mn(8)W(4)} Keggin cluster within a [W(36)Mn(10)Si(4)O(136)(OH)(4)(H(2)O)8](24-) cluster are reported: K(10)Li(14)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8)] (1) and K(10)Li1(3.5)Mn(0.25)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8) ] (1'). Bulk characterization of the clusters has been carried out by single crystal X-ray structure analysis, ICP-MS, TGA, ESI-MS, CV and SQUID-magnetometer analysis. X-ray analysis revealed that 1' has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two "intermediate" types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X-ray analysis and revealed to be novel clusters K(4)Li(22)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·56H(2)O (2) and Mn(2)K(8)Li(14)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·45H(2)O (3). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X-ray crystallography directly facilitated understanding the means by which a POM assembled.
U2 - 10.1002/chem.201204345
DO - 10.1002/chem.201204345
M3 - Article
C2 - 23362186
SN - 0947-6539
VL - 19
SP - 2976
EP - 2981
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 9
ER -