Neural Semantic Role Labeling with Dependency Path Embeddings

Michael Roth, Maria Lapata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper introduces a novel model for semantic role labeling that makes use of neural sequence modeling techniques. Our approach is motivated by the observation that complex syntactic structures and related phenomena, such as nested subordinations and nominal predicates, are not handled well by existing models. Our model treats such instances as subsequences of lexicalized dependency paths and learns suitable embedding representations. We experimentally demonstrate that such embeddings can improve results over previous state-of-the-art semantic role labelers, and showcase qualitative improvements obtained by our method.
Original languageEnglish
Title of host publicationProceedings of the 54th Annual Meeting of the Association for Computational Linguistics
Place of PublicationBerlin, Germany
PublisherAssociation for Computational Linguistics
Pages1192-1202
Number of pages11
ISBN (Electronic)978-1-945626-00-5
DOIs
Publication statusPublished - 12 Aug 2016
Event54th Annual Meeting of the Association for Computational Linguistics - Berlin, Germany
Duration: 7 Aug 201612 Aug 2016
https://mirror.aclweb.org/acl2016/

Conference

Conference54th Annual Meeting of the Association for Computational Linguistics
Abbreviated titleACL 2016
Country/TerritoryGermany
CityBerlin
Period7/08/1612/08/16
Internet address

Fingerprint

Dive into the research topics of 'Neural Semantic Role Labeling with Dependency Path Embeddings'. Together they form a unique fingerprint.

Cite this