TY - JOUR
T1 - Neuroinformatics and modeling of the basal ganglia: bridging pharmacology and physiology
AU - Gillies, Andrew
AU - Willshaw, David
PY - 2007
Y1 - 2007
N2 - The subthalamic nucleus (STN) is the primary target for the chronic deep brain stimulation treatment of Parkinson's disease. STN neurons exhibit a variety of characteristic properties that may play a key role in the overall population response to deep brain stimulation. Neuroinformatics techniques, in particular computational modeling, provide a method of bringing together pharmacological phenomena, such as the loss of dopamine, with electrophysiological characteristics. Developing accurate models of STN neurons plays an important part in the process of uncovering the link between the changes in STN pharmacology, physiology and synaptic input that occurs with Parkinson's disease and the effectiveness of treatments targeting the STN. We review a general procedure for developing computational models and present a model of STN neurons that reveals important membrane channel interactions. In particular, changes in these channel interactions under parkinsonian conditions may underlie changes in characteristic physiology, critical in determining the mechanisms of deep brain stimulation.
AB - The subthalamic nucleus (STN) is the primary target for the chronic deep brain stimulation treatment of Parkinson's disease. STN neurons exhibit a variety of characteristic properties that may play a key role in the overall population response to deep brain stimulation. Neuroinformatics techniques, in particular computational modeling, provide a method of bringing together pharmacological phenomena, such as the loss of dopamine, with electrophysiological characteristics. Developing accurate models of STN neurons plays an important part in the process of uncovering the link between the changes in STN pharmacology, physiology and synaptic input that occurs with Parkinson's disease and the effectiveness of treatments targeting the STN. We review a general procedure for developing computational models and present a model of STN neurons that reveals important membrane channel interactions. In particular, changes in these channel interactions under parkinsonian conditions may underlie changes in characteristic physiology, critical in determining the mechanisms of deep brain stimulation.
U2 - 10.1586/17434440.4.5.663
DO - 10.1586/17434440.4.5.663
M3 - Article
C2 - 17850200
SN - 1743-4440
VL - 4
SP - 663
EP - 672
JO - Expert review of medical devices
JF - Expert review of medical devices
IS - 5
ER -